Metamath Proof Explorer


Theorem fpar

Description: Merge two functions in parallel. Use as the second argument of a composition with a binary operation to build compound functions such as ( x e. ( 0 [,) +oo ) , y e. RR |-> ( ( sqrtx ) + ( siny ) ) ) , see also ex-fpar . (Contributed by NM, 17-Sep-2007) (Proof shortened by Mario Carneiro, 28-Apr-2015)

Ref Expression
Hypothesis fpar.1 H=1stV×V-1F1stV×V2ndV×V-1G2ndV×V
Assertion fpar FFnAGFnBH=xA,yBFxGy

Proof

Step Hyp Ref Expression
1 fpar.1 H=1stV×V-1F1stV×V2ndV×V-1G2ndV×V
2 fparlem3 FFnA1stV×V-1F1stV×V=xAx×V×Fx×V
3 fparlem4 GFnB2ndV×V-1G2ndV×V=yBV×y×V×Gy
4 2 3 ineqan12d FFnAGFnB1stV×V-1F1stV×V2ndV×V-1G2ndV×V=xAx×V×Fx×VyBV×y×V×Gy
5 opex FxGyV
6 5 dfmpo xA,yBFxGy=xAyBxyFxGy
7 inxp x×V×Fx×VV×y×V×Gy=x×VV×y×Fx×VV×Gy
8 inxp x×VV×y=xV×Vy
9 inv1 xV=x
10 incom Vy=yV
11 inv1 yV=y
12 10 11 eqtri Vy=y
13 9 12 xpeq12i xV×Vy=x×y
14 vex xV
15 vex yV
16 14 15 xpsn x×y=xy
17 8 13 16 3eqtri x×VV×y=xy
18 inxp Fx×VV×Gy=FxV×VGy
19 inv1 FxV=Fx
20 incom VGy=GyV
21 inv1 GyV=Gy
22 20 21 eqtri VGy=Gy
23 19 22 xpeq12i FxV×VGy=Fx×Gy
24 fvex FxV
25 fvex GyV
26 24 25 xpsn Fx×Gy=FxGy
27 18 23 26 3eqtri Fx×VV×Gy=FxGy
28 17 27 xpeq12i x×VV×y×Fx×VV×Gy=xy×FxGy
29 opex xyV
30 29 5 xpsn xy×FxGy=xyFxGy
31 7 28 30 3eqtri x×V×Fx×VV×y×V×Gy=xyFxGy
32 31 a1i yBx×V×Fx×VV×y×V×Gy=xyFxGy
33 32 iuneq2i yBx×V×Fx×VV×y×V×Gy=yBxyFxGy
34 33 a1i xAyBx×V×Fx×VV×y×V×Gy=yBxyFxGy
35 34 iuneq2i xAyBx×V×Fx×VV×y×V×Gy=xAyBxyFxGy
36 2iunin xAyBx×V×Fx×VV×y×V×Gy=xAx×V×Fx×VyBV×y×V×Gy
37 6 35 36 3eqtr2i xA,yBFxGy=xAx×V×Fx×VyBV×y×V×Gy
38 4 1 37 3eqtr4g FFnAGFnBH=xA,yBFxGy