Metamath Proof Explorer


Theorem fsplit

Description: A function that can be used to feed a common value to both operands of an operation. Use as the second argument of a composition with the function of fpar in order to build compound functions such as ( x e. ( 0 [,) +oo ) |-> ( ( sqrtx ) + ( sinx ) ) ) . (Contributed by NM, 17-Sep-2007) Replace use of dfid2 with df-id . (Revised by BJ, 31-Dec-2023)

Ref Expression
Assertion fsplit 1stI-1=xVxx

Proof

Step Hyp Ref Expression
1 vex xV
2 vex yV
3 1 2 brcnv x1stI-1yy1stIx
4 1 brresi y1stIxyIy1stx
5 19.42v z1sty=xy=zz1sty=xzy=zz
6 vex zV
7 6 6 op1std y=zz1sty=z
8 7 eqeq1d y=zz1sty=xz=x
9 8 pm5.32ri 1sty=xy=zzz=xy=zz
10 9 exbii z1sty=xy=zzzz=xy=zz
11 fo1st 1st:VontoV
12 fofn 1st:VontoV1stFnV
13 11 12 ax-mp 1stFnV
14 fnbrfvb 1stFnVyV1sty=xy1stx
15 13 2 14 mp2an 1sty=xy1stx
16 df-id I=zt|z=t
17 16 eleq2i yIyzt|z=t
18 elopab yzt|z=tzty=ztz=t
19 ancom y=ztz=tz=ty=zt
20 equcom z=tt=z
21 20 anbi1i z=ty=ztt=zy=zt
22 opeq2 t=zzt=zz
23 22 eqeq2d t=zy=zty=zz
24 23 pm5.32i t=zy=ztt=zy=zz
25 19 21 24 3bitri y=ztz=tt=zy=zz
26 25 exbii ty=ztz=ttt=zy=zz
27 biidd t=zy=zzy=zz
28 27 equsexvw tt=zy=zzy=zz
29 26 28 bitri ty=ztz=ty=zz
30 29 exbii zty=ztz=tzy=zz
31 17 18 30 3bitrri zy=zzyI
32 15 31 anbi12ci 1sty=xzy=zzyIy1stx
33 5 10 32 3bitr3ri yIy1stxzz=xy=zz
34 id z=xz=x
35 34 34 opeq12d z=xzz=xx
36 35 eqeq2d z=xy=zzy=xx
37 36 equsexvw zz=xy=zzy=xx
38 33 37 bitri yIy1stxy=xx
39 3 4 38 3bitri x1stI-1yy=xx
40 39 opabbii xy|x1stI-1y=xy|y=xx
41 relcnv Rel1stI-1
42 dfrel4v Rel1stI-11stI-1=xy|x1stI-1y
43 41 42 mpbi 1stI-1=xy|x1stI-1y
44 mptv xVxx=xy|y=xx
45 40 43 44 3eqtr4i 1stI-1=xVxx