| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vex |
|- x e. _V |
| 2 |
|
vex |
|- y e. _V |
| 3 |
1 2
|
brcnv |
|- ( x `' ( 1st |` _I ) y <-> y ( 1st |` _I ) x ) |
| 4 |
1
|
brresi |
|- ( y ( 1st |` _I ) x <-> ( y e. _I /\ y 1st x ) ) |
| 5 |
|
19.42v |
|- ( E. z ( ( 1st ` y ) = x /\ y = <. z , z >. ) <-> ( ( 1st ` y ) = x /\ E. z y = <. z , z >. ) ) |
| 6 |
|
vex |
|- z e. _V |
| 7 |
6 6
|
op1std |
|- ( y = <. z , z >. -> ( 1st ` y ) = z ) |
| 8 |
7
|
eqeq1d |
|- ( y = <. z , z >. -> ( ( 1st ` y ) = x <-> z = x ) ) |
| 9 |
8
|
pm5.32ri |
|- ( ( ( 1st ` y ) = x /\ y = <. z , z >. ) <-> ( z = x /\ y = <. z , z >. ) ) |
| 10 |
9
|
exbii |
|- ( E. z ( ( 1st ` y ) = x /\ y = <. z , z >. ) <-> E. z ( z = x /\ y = <. z , z >. ) ) |
| 11 |
|
fo1st |
|- 1st : _V -onto-> _V |
| 12 |
|
fofn |
|- ( 1st : _V -onto-> _V -> 1st Fn _V ) |
| 13 |
11 12
|
ax-mp |
|- 1st Fn _V |
| 14 |
|
fnbrfvb |
|- ( ( 1st Fn _V /\ y e. _V ) -> ( ( 1st ` y ) = x <-> y 1st x ) ) |
| 15 |
13 2 14
|
mp2an |
|- ( ( 1st ` y ) = x <-> y 1st x ) |
| 16 |
|
df-id |
|- _I = { <. z , t >. | z = t } |
| 17 |
16
|
eleq2i |
|- ( y e. _I <-> y e. { <. z , t >. | z = t } ) |
| 18 |
|
elopab |
|- ( y e. { <. z , t >. | z = t } <-> E. z E. t ( y = <. z , t >. /\ z = t ) ) |
| 19 |
|
ancom |
|- ( ( y = <. z , t >. /\ z = t ) <-> ( z = t /\ y = <. z , t >. ) ) |
| 20 |
|
equcom |
|- ( z = t <-> t = z ) |
| 21 |
20
|
anbi1i |
|- ( ( z = t /\ y = <. z , t >. ) <-> ( t = z /\ y = <. z , t >. ) ) |
| 22 |
|
opeq2 |
|- ( t = z -> <. z , t >. = <. z , z >. ) |
| 23 |
22
|
eqeq2d |
|- ( t = z -> ( y = <. z , t >. <-> y = <. z , z >. ) ) |
| 24 |
23
|
pm5.32i |
|- ( ( t = z /\ y = <. z , t >. ) <-> ( t = z /\ y = <. z , z >. ) ) |
| 25 |
19 21 24
|
3bitri |
|- ( ( y = <. z , t >. /\ z = t ) <-> ( t = z /\ y = <. z , z >. ) ) |
| 26 |
25
|
exbii |
|- ( E. t ( y = <. z , t >. /\ z = t ) <-> E. t ( t = z /\ y = <. z , z >. ) ) |
| 27 |
|
biidd |
|- ( t = z -> ( y = <. z , z >. <-> y = <. z , z >. ) ) |
| 28 |
27
|
equsexvw |
|- ( E. t ( t = z /\ y = <. z , z >. ) <-> y = <. z , z >. ) |
| 29 |
26 28
|
bitri |
|- ( E. t ( y = <. z , t >. /\ z = t ) <-> y = <. z , z >. ) |
| 30 |
29
|
exbii |
|- ( E. z E. t ( y = <. z , t >. /\ z = t ) <-> E. z y = <. z , z >. ) |
| 31 |
17 18 30
|
3bitrri |
|- ( E. z y = <. z , z >. <-> y e. _I ) |
| 32 |
15 31
|
anbi12ci |
|- ( ( ( 1st ` y ) = x /\ E. z y = <. z , z >. ) <-> ( y e. _I /\ y 1st x ) ) |
| 33 |
5 10 32
|
3bitr3ri |
|- ( ( y e. _I /\ y 1st x ) <-> E. z ( z = x /\ y = <. z , z >. ) ) |
| 34 |
|
id |
|- ( z = x -> z = x ) |
| 35 |
34 34
|
opeq12d |
|- ( z = x -> <. z , z >. = <. x , x >. ) |
| 36 |
35
|
eqeq2d |
|- ( z = x -> ( y = <. z , z >. <-> y = <. x , x >. ) ) |
| 37 |
36
|
equsexvw |
|- ( E. z ( z = x /\ y = <. z , z >. ) <-> y = <. x , x >. ) |
| 38 |
33 37
|
bitri |
|- ( ( y e. _I /\ y 1st x ) <-> y = <. x , x >. ) |
| 39 |
3 4 38
|
3bitri |
|- ( x `' ( 1st |` _I ) y <-> y = <. x , x >. ) |
| 40 |
39
|
opabbii |
|- { <. x , y >. | x `' ( 1st |` _I ) y } = { <. x , y >. | y = <. x , x >. } |
| 41 |
|
relcnv |
|- Rel `' ( 1st |` _I ) |
| 42 |
|
dfrel4v |
|- ( Rel `' ( 1st |` _I ) <-> `' ( 1st |` _I ) = { <. x , y >. | x `' ( 1st |` _I ) y } ) |
| 43 |
41 42
|
mpbi |
|- `' ( 1st |` _I ) = { <. x , y >. | x `' ( 1st |` _I ) y } |
| 44 |
|
mptv |
|- ( x e. _V |-> <. x , x >. ) = { <. x , y >. | y = <. x , x >. } |
| 45 |
40 43 44
|
3eqtr4i |
|- `' ( 1st |` _I ) = ( x e. _V |-> <. x , x >. ) |