| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsplitfpar.h |
|- H = ( ( `' ( 1st |` ( _V X. _V ) ) o. ( F o. ( 1st |` ( _V X. _V ) ) ) ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. ( G o. ( 2nd |` ( _V X. _V ) ) ) ) ) |
| 2 |
|
fsplitfpar.s |
|- S = ( `' ( 1st |` _I ) |` A ) |
| 3 |
|
fsplit |
|- `' ( 1st |` _I ) = ( x e. _V |-> <. x , x >. ) |
| 4 |
3
|
reseq1i |
|- ( `' ( 1st |` _I ) |` A ) = ( ( x e. _V |-> <. x , x >. ) |` A ) |
| 5 |
2 4
|
eqtri |
|- S = ( ( x e. _V |-> <. x , x >. ) |` A ) |
| 6 |
5
|
fveq1i |
|- ( S ` a ) = ( ( ( x e. _V |-> <. x , x >. ) |` A ) ` a ) |
| 7 |
6
|
a1i |
|- ( ( ( F Fn A /\ G Fn A ) /\ a e. A ) -> ( S ` a ) = ( ( ( x e. _V |-> <. x , x >. ) |` A ) ` a ) ) |
| 8 |
|
fvres |
|- ( a e. A -> ( ( ( x e. _V |-> <. x , x >. ) |` A ) ` a ) = ( ( x e. _V |-> <. x , x >. ) ` a ) ) |
| 9 |
|
eqidd |
|- ( a e. A -> ( x e. _V |-> <. x , x >. ) = ( x e. _V |-> <. x , x >. ) ) |
| 10 |
|
id |
|- ( x = a -> x = a ) |
| 11 |
10 10
|
opeq12d |
|- ( x = a -> <. x , x >. = <. a , a >. ) |
| 12 |
11
|
adantl |
|- ( ( a e. A /\ x = a ) -> <. x , x >. = <. a , a >. ) |
| 13 |
|
elex |
|- ( a e. A -> a e. _V ) |
| 14 |
|
opex |
|- <. a , a >. e. _V |
| 15 |
14
|
a1i |
|- ( a e. A -> <. a , a >. e. _V ) |
| 16 |
9 12 13 15
|
fvmptd |
|- ( a e. A -> ( ( x e. _V |-> <. x , x >. ) ` a ) = <. a , a >. ) |
| 17 |
8 16
|
eqtrd |
|- ( a e. A -> ( ( ( x e. _V |-> <. x , x >. ) |` A ) ` a ) = <. a , a >. ) |
| 18 |
17
|
adantl |
|- ( ( ( F Fn A /\ G Fn A ) /\ a e. A ) -> ( ( ( x e. _V |-> <. x , x >. ) |` A ) ` a ) = <. a , a >. ) |
| 19 |
7 18
|
eqtrd |
|- ( ( ( F Fn A /\ G Fn A ) /\ a e. A ) -> ( S ` a ) = <. a , a >. ) |
| 20 |
19
|
fveq2d |
|- ( ( ( F Fn A /\ G Fn A ) /\ a e. A ) -> ( H ` ( S ` a ) ) = ( H ` <. a , a >. ) ) |
| 21 |
|
df-ov |
|- ( a H a ) = ( H ` <. a , a >. ) |
| 22 |
1
|
fpar |
|- ( ( F Fn A /\ G Fn A ) -> H = ( x e. A , y e. A |-> <. ( F ` x ) , ( G ` y ) >. ) ) |
| 23 |
22
|
adantr |
|- ( ( ( F Fn A /\ G Fn A ) /\ a e. A ) -> H = ( x e. A , y e. A |-> <. ( F ` x ) , ( G ` y ) >. ) ) |
| 24 |
|
fveq2 |
|- ( x = a -> ( F ` x ) = ( F ` a ) ) |
| 25 |
24
|
adantr |
|- ( ( x = a /\ y = a ) -> ( F ` x ) = ( F ` a ) ) |
| 26 |
|
fveq2 |
|- ( y = a -> ( G ` y ) = ( G ` a ) ) |
| 27 |
26
|
adantl |
|- ( ( x = a /\ y = a ) -> ( G ` y ) = ( G ` a ) ) |
| 28 |
25 27
|
opeq12d |
|- ( ( x = a /\ y = a ) -> <. ( F ` x ) , ( G ` y ) >. = <. ( F ` a ) , ( G ` a ) >. ) |
| 29 |
28
|
adantl |
|- ( ( ( ( F Fn A /\ G Fn A ) /\ a e. A ) /\ ( x = a /\ y = a ) ) -> <. ( F ` x ) , ( G ` y ) >. = <. ( F ` a ) , ( G ` a ) >. ) |
| 30 |
|
simpr |
|- ( ( ( F Fn A /\ G Fn A ) /\ a e. A ) -> a e. A ) |
| 31 |
|
opex |
|- <. ( F ` a ) , ( G ` a ) >. e. _V |
| 32 |
31
|
a1i |
|- ( ( ( F Fn A /\ G Fn A ) /\ a e. A ) -> <. ( F ` a ) , ( G ` a ) >. e. _V ) |
| 33 |
23 29 30 30 32
|
ovmpod |
|- ( ( ( F Fn A /\ G Fn A ) /\ a e. A ) -> ( a H a ) = <. ( F ` a ) , ( G ` a ) >. ) |
| 34 |
21 33
|
eqtr3id |
|- ( ( ( F Fn A /\ G Fn A ) /\ a e. A ) -> ( H ` <. a , a >. ) = <. ( F ` a ) , ( G ` a ) >. ) |
| 35 |
20 34
|
eqtrd |
|- ( ( ( F Fn A /\ G Fn A ) /\ a e. A ) -> ( H ` ( S ` a ) ) = <. ( F ` a ) , ( G ` a ) >. ) |
| 36 |
|
eqid |
|- ( a e. _V |-> <. a , a >. ) = ( a e. _V |-> <. a , a >. ) |
| 37 |
36
|
fnmpt |
|- ( A. a e. _V <. a , a >. e. _V -> ( a e. _V |-> <. a , a >. ) Fn _V ) |
| 38 |
14
|
a1i |
|- ( a e. _V -> <. a , a >. e. _V ) |
| 39 |
37 38
|
mprg |
|- ( a e. _V |-> <. a , a >. ) Fn _V |
| 40 |
|
ssv |
|- A C_ _V |
| 41 |
|
fnssres |
|- ( ( ( a e. _V |-> <. a , a >. ) Fn _V /\ A C_ _V ) -> ( ( a e. _V |-> <. a , a >. ) |` A ) Fn A ) |
| 42 |
39 40 41
|
mp2an |
|- ( ( a e. _V |-> <. a , a >. ) |` A ) Fn A |
| 43 |
|
fsplit |
|- `' ( 1st |` _I ) = ( a e. _V |-> <. a , a >. ) |
| 44 |
43
|
reseq1i |
|- ( `' ( 1st |` _I ) |` A ) = ( ( a e. _V |-> <. a , a >. ) |` A ) |
| 45 |
2 44
|
eqtri |
|- S = ( ( a e. _V |-> <. a , a >. ) |` A ) |
| 46 |
45
|
fneq1i |
|- ( S Fn A <-> ( ( a e. _V |-> <. a , a >. ) |` A ) Fn A ) |
| 47 |
42 46
|
mpbir |
|- S Fn A |
| 48 |
47
|
a1i |
|- ( ( F Fn A /\ G Fn A ) -> S Fn A ) |
| 49 |
|
fvco2 |
|- ( ( S Fn A /\ a e. A ) -> ( ( H o. S ) ` a ) = ( H ` ( S ` a ) ) ) |
| 50 |
48 49
|
sylan |
|- ( ( ( F Fn A /\ G Fn A ) /\ a e. A ) -> ( ( H o. S ) ` a ) = ( H ` ( S ` a ) ) ) |
| 51 |
|
fveq2 |
|- ( x = a -> ( G ` x ) = ( G ` a ) ) |
| 52 |
24 51
|
opeq12d |
|- ( x = a -> <. ( F ` x ) , ( G ` x ) >. = <. ( F ` a ) , ( G ` a ) >. ) |
| 53 |
|
eqid |
|- ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) |
| 54 |
52 53 31
|
fvmpt |
|- ( a e. A -> ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ` a ) = <. ( F ` a ) , ( G ` a ) >. ) |
| 55 |
54
|
adantl |
|- ( ( ( F Fn A /\ G Fn A ) /\ a e. A ) -> ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ` a ) = <. ( F ` a ) , ( G ` a ) >. ) |
| 56 |
35 50 55
|
3eqtr4d |
|- ( ( ( F Fn A /\ G Fn A ) /\ a e. A ) -> ( ( H o. S ) ` a ) = ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ` a ) ) |
| 57 |
56
|
ralrimiva |
|- ( ( F Fn A /\ G Fn A ) -> A. a e. A ( ( H o. S ) ` a ) = ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ` a ) ) |
| 58 |
|
opex |
|- <. ( F ` x ) , ( G ` y ) >. e. _V |
| 59 |
58
|
a1i |
|- ( ( ( F Fn A /\ G Fn A ) /\ ( x e. A /\ y e. A ) ) -> <. ( F ` x ) , ( G ` y ) >. e. _V ) |
| 60 |
59
|
ralrimivva |
|- ( ( F Fn A /\ G Fn A ) -> A. x e. A A. y e. A <. ( F ` x ) , ( G ` y ) >. e. _V ) |
| 61 |
|
eqid |
|- ( x e. A , y e. A |-> <. ( F ` x ) , ( G ` y ) >. ) = ( x e. A , y e. A |-> <. ( F ` x ) , ( G ` y ) >. ) |
| 62 |
61
|
fnmpo |
|- ( A. x e. A A. y e. A <. ( F ` x ) , ( G ` y ) >. e. _V -> ( x e. A , y e. A |-> <. ( F ` x ) , ( G ` y ) >. ) Fn ( A X. A ) ) |
| 63 |
60 62
|
syl |
|- ( ( F Fn A /\ G Fn A ) -> ( x e. A , y e. A |-> <. ( F ` x ) , ( G ` y ) >. ) Fn ( A X. A ) ) |
| 64 |
22
|
fneq1d |
|- ( ( F Fn A /\ G Fn A ) -> ( H Fn ( A X. A ) <-> ( x e. A , y e. A |-> <. ( F ` x ) , ( G ` y ) >. ) Fn ( A X. A ) ) ) |
| 65 |
63 64
|
mpbird |
|- ( ( F Fn A /\ G Fn A ) -> H Fn ( A X. A ) ) |
| 66 |
14
|
a1i |
|- ( ( ( F Fn A /\ G Fn A ) /\ a e. _V ) -> <. a , a >. e. _V ) |
| 67 |
66
|
ralrimiva |
|- ( ( F Fn A /\ G Fn A ) -> A. a e. _V <. a , a >. e. _V ) |
| 68 |
67 37
|
syl |
|- ( ( F Fn A /\ G Fn A ) -> ( a e. _V |-> <. a , a >. ) Fn _V ) |
| 69 |
68 40 41
|
sylancl |
|- ( ( F Fn A /\ G Fn A ) -> ( ( a e. _V |-> <. a , a >. ) |` A ) Fn A ) |
| 70 |
69 46
|
sylibr |
|- ( ( F Fn A /\ G Fn A ) -> S Fn A ) |
| 71 |
45
|
rneqi |
|- ran S = ran ( ( a e. _V |-> <. a , a >. ) |` A ) |
| 72 |
|
mptima |
|- ( ( a e. _V |-> <. a , a >. ) " A ) = ran ( a e. ( _V i^i A ) |-> <. a , a >. ) |
| 73 |
|
df-ima |
|- ( ( a e. _V |-> <. a , a >. ) " A ) = ran ( ( a e. _V |-> <. a , a >. ) |` A ) |
| 74 |
|
eqid |
|- ( a e. ( _V i^i A ) |-> <. a , a >. ) = ( a e. ( _V i^i A ) |-> <. a , a >. ) |
| 75 |
74
|
rnmpt |
|- ran ( a e. ( _V i^i A ) |-> <. a , a >. ) = { p | E. a e. ( _V i^i A ) p = <. a , a >. } |
| 76 |
72 73 75
|
3eqtr3i |
|- ran ( ( a e. _V |-> <. a , a >. ) |` A ) = { p | E. a e. ( _V i^i A ) p = <. a , a >. } |
| 77 |
71 76
|
eqtri |
|- ran S = { p | E. a e. ( _V i^i A ) p = <. a , a >. } |
| 78 |
|
elinel2 |
|- ( a e. ( _V i^i A ) -> a e. A ) |
| 79 |
|
simpl |
|- ( ( a e. A /\ p = <. a , a >. ) -> a e. A ) |
| 80 |
79 79
|
opelxpd |
|- ( ( a e. A /\ p = <. a , a >. ) -> <. a , a >. e. ( A X. A ) ) |
| 81 |
|
eleq1 |
|- ( p = <. a , a >. -> ( p e. ( A X. A ) <-> <. a , a >. e. ( A X. A ) ) ) |
| 82 |
81
|
adantl |
|- ( ( a e. A /\ p = <. a , a >. ) -> ( p e. ( A X. A ) <-> <. a , a >. e. ( A X. A ) ) ) |
| 83 |
80 82
|
mpbird |
|- ( ( a e. A /\ p = <. a , a >. ) -> p e. ( A X. A ) ) |
| 84 |
83
|
ex |
|- ( a e. A -> ( p = <. a , a >. -> p e. ( A X. A ) ) ) |
| 85 |
78 84
|
syl |
|- ( a e. ( _V i^i A ) -> ( p = <. a , a >. -> p e. ( A X. A ) ) ) |
| 86 |
85
|
rexlimiv |
|- ( E. a e. ( _V i^i A ) p = <. a , a >. -> p e. ( A X. A ) ) |
| 87 |
86
|
abssi |
|- { p | E. a e. ( _V i^i A ) p = <. a , a >. } C_ ( A X. A ) |
| 88 |
87
|
a1i |
|- ( ( F Fn A /\ G Fn A ) -> { p | E. a e. ( _V i^i A ) p = <. a , a >. } C_ ( A X. A ) ) |
| 89 |
77 88
|
eqsstrid |
|- ( ( F Fn A /\ G Fn A ) -> ran S C_ ( A X. A ) ) |
| 90 |
|
fnco |
|- ( ( H Fn ( A X. A ) /\ S Fn A /\ ran S C_ ( A X. A ) ) -> ( H o. S ) Fn A ) |
| 91 |
65 70 89 90
|
syl3anc |
|- ( ( F Fn A /\ G Fn A ) -> ( H o. S ) Fn A ) |
| 92 |
|
opex |
|- <. ( F ` x ) , ( G ` x ) >. e. _V |
| 93 |
92
|
a1i |
|- ( ( ( F Fn A /\ G Fn A ) /\ x e. A ) -> <. ( F ` x ) , ( G ` x ) >. e. _V ) |
| 94 |
93
|
ralrimiva |
|- ( ( F Fn A /\ G Fn A ) -> A. x e. A <. ( F ` x ) , ( G ` x ) >. e. _V ) |
| 95 |
53
|
fnmpt |
|- ( A. x e. A <. ( F ` x ) , ( G ` x ) >. e. _V -> ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) Fn A ) |
| 96 |
94 95
|
syl |
|- ( ( F Fn A /\ G Fn A ) -> ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) Fn A ) |
| 97 |
|
eqfnfv |
|- ( ( ( H o. S ) Fn A /\ ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) Fn A ) -> ( ( H o. S ) = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) <-> A. a e. A ( ( H o. S ) ` a ) = ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ` a ) ) ) |
| 98 |
91 96 97
|
syl2anc |
|- ( ( F Fn A /\ G Fn A ) -> ( ( H o. S ) = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) <-> A. a e. A ( ( H o. S ) ` a ) = ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ` a ) ) ) |
| 99 |
57 98
|
mpbird |
|- ( ( F Fn A /\ G Fn A ) -> ( H o. S ) = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) |