| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsplitfpar.h |  |-  H = ( ( `' ( 1st |` ( _V X. _V ) ) o. ( F o. ( 1st |` ( _V X. _V ) ) ) ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. ( G o. ( 2nd |` ( _V X. _V ) ) ) ) ) | 
						
							| 2 |  | fsplitfpar.s |  |-  S = ( `' ( 1st |` _I ) |` A ) | 
						
							| 3 |  | fsplit |  |-  `' ( 1st |` _I ) = ( x e. _V |-> <. x , x >. ) | 
						
							| 4 | 3 | reseq1i |  |-  ( `' ( 1st |` _I ) |` A ) = ( ( x e. _V |-> <. x , x >. ) |` A ) | 
						
							| 5 | 2 4 | eqtri |  |-  S = ( ( x e. _V |-> <. x , x >. ) |` A ) | 
						
							| 6 | 5 | fveq1i |  |-  ( S ` a ) = ( ( ( x e. _V |-> <. x , x >. ) |` A ) ` a ) | 
						
							| 7 | 6 | a1i |  |-  ( ( ( F Fn A /\ G Fn A ) /\ a e. A ) -> ( S ` a ) = ( ( ( x e. _V |-> <. x , x >. ) |` A ) ` a ) ) | 
						
							| 8 |  | fvres |  |-  ( a e. A -> ( ( ( x e. _V |-> <. x , x >. ) |` A ) ` a ) = ( ( x e. _V |-> <. x , x >. ) ` a ) ) | 
						
							| 9 |  | eqidd |  |-  ( a e. A -> ( x e. _V |-> <. x , x >. ) = ( x e. _V |-> <. x , x >. ) ) | 
						
							| 10 |  | id |  |-  ( x = a -> x = a ) | 
						
							| 11 | 10 10 | opeq12d |  |-  ( x = a -> <. x , x >. = <. a , a >. ) | 
						
							| 12 | 11 | adantl |  |-  ( ( a e. A /\ x = a ) -> <. x , x >. = <. a , a >. ) | 
						
							| 13 |  | elex |  |-  ( a e. A -> a e. _V ) | 
						
							| 14 |  | opex |  |-  <. a , a >. e. _V | 
						
							| 15 | 14 | a1i |  |-  ( a e. A -> <. a , a >. e. _V ) | 
						
							| 16 | 9 12 13 15 | fvmptd |  |-  ( a e. A -> ( ( x e. _V |-> <. x , x >. ) ` a ) = <. a , a >. ) | 
						
							| 17 | 8 16 | eqtrd |  |-  ( a e. A -> ( ( ( x e. _V |-> <. x , x >. ) |` A ) ` a ) = <. a , a >. ) | 
						
							| 18 | 17 | adantl |  |-  ( ( ( F Fn A /\ G Fn A ) /\ a e. A ) -> ( ( ( x e. _V |-> <. x , x >. ) |` A ) ` a ) = <. a , a >. ) | 
						
							| 19 | 7 18 | eqtrd |  |-  ( ( ( F Fn A /\ G Fn A ) /\ a e. A ) -> ( S ` a ) = <. a , a >. ) | 
						
							| 20 | 19 | fveq2d |  |-  ( ( ( F Fn A /\ G Fn A ) /\ a e. A ) -> ( H ` ( S ` a ) ) = ( H ` <. a , a >. ) ) | 
						
							| 21 |  | df-ov |  |-  ( a H a ) = ( H ` <. a , a >. ) | 
						
							| 22 | 1 | fpar |  |-  ( ( F Fn A /\ G Fn A ) -> H = ( x e. A , y e. A |-> <. ( F ` x ) , ( G ` y ) >. ) ) | 
						
							| 23 | 22 | adantr |  |-  ( ( ( F Fn A /\ G Fn A ) /\ a e. A ) -> H = ( x e. A , y e. A |-> <. ( F ` x ) , ( G ` y ) >. ) ) | 
						
							| 24 |  | fveq2 |  |-  ( x = a -> ( F ` x ) = ( F ` a ) ) | 
						
							| 25 | 24 | adantr |  |-  ( ( x = a /\ y = a ) -> ( F ` x ) = ( F ` a ) ) | 
						
							| 26 |  | fveq2 |  |-  ( y = a -> ( G ` y ) = ( G ` a ) ) | 
						
							| 27 | 26 | adantl |  |-  ( ( x = a /\ y = a ) -> ( G ` y ) = ( G ` a ) ) | 
						
							| 28 | 25 27 | opeq12d |  |-  ( ( x = a /\ y = a ) -> <. ( F ` x ) , ( G ` y ) >. = <. ( F ` a ) , ( G ` a ) >. ) | 
						
							| 29 | 28 | adantl |  |-  ( ( ( ( F Fn A /\ G Fn A ) /\ a e. A ) /\ ( x = a /\ y = a ) ) -> <. ( F ` x ) , ( G ` y ) >. = <. ( F ` a ) , ( G ` a ) >. ) | 
						
							| 30 |  | simpr |  |-  ( ( ( F Fn A /\ G Fn A ) /\ a e. A ) -> a e. A ) | 
						
							| 31 |  | opex |  |-  <. ( F ` a ) , ( G ` a ) >. e. _V | 
						
							| 32 | 31 | a1i |  |-  ( ( ( F Fn A /\ G Fn A ) /\ a e. A ) -> <. ( F ` a ) , ( G ` a ) >. e. _V ) | 
						
							| 33 | 23 29 30 30 32 | ovmpod |  |-  ( ( ( F Fn A /\ G Fn A ) /\ a e. A ) -> ( a H a ) = <. ( F ` a ) , ( G ` a ) >. ) | 
						
							| 34 | 21 33 | eqtr3id |  |-  ( ( ( F Fn A /\ G Fn A ) /\ a e. A ) -> ( H ` <. a , a >. ) = <. ( F ` a ) , ( G ` a ) >. ) | 
						
							| 35 | 20 34 | eqtrd |  |-  ( ( ( F Fn A /\ G Fn A ) /\ a e. A ) -> ( H ` ( S ` a ) ) = <. ( F ` a ) , ( G ` a ) >. ) | 
						
							| 36 |  | eqid |  |-  ( a e. _V |-> <. a , a >. ) = ( a e. _V |-> <. a , a >. ) | 
						
							| 37 | 36 | fnmpt |  |-  ( A. a e. _V <. a , a >. e. _V -> ( a e. _V |-> <. a , a >. ) Fn _V ) | 
						
							| 38 | 14 | a1i |  |-  ( a e. _V -> <. a , a >. e. _V ) | 
						
							| 39 | 37 38 | mprg |  |-  ( a e. _V |-> <. a , a >. ) Fn _V | 
						
							| 40 |  | ssv |  |-  A C_ _V | 
						
							| 41 |  | fnssres |  |-  ( ( ( a e. _V |-> <. a , a >. ) Fn _V /\ A C_ _V ) -> ( ( a e. _V |-> <. a , a >. ) |` A ) Fn A ) | 
						
							| 42 | 39 40 41 | mp2an |  |-  ( ( a e. _V |-> <. a , a >. ) |` A ) Fn A | 
						
							| 43 |  | fsplit |  |-  `' ( 1st |` _I ) = ( a e. _V |-> <. a , a >. ) | 
						
							| 44 | 43 | reseq1i |  |-  ( `' ( 1st |` _I ) |` A ) = ( ( a e. _V |-> <. a , a >. ) |` A ) | 
						
							| 45 | 2 44 | eqtri |  |-  S = ( ( a e. _V |-> <. a , a >. ) |` A ) | 
						
							| 46 | 45 | fneq1i |  |-  ( S Fn A <-> ( ( a e. _V |-> <. a , a >. ) |` A ) Fn A ) | 
						
							| 47 | 42 46 | mpbir |  |-  S Fn A | 
						
							| 48 | 47 | a1i |  |-  ( ( F Fn A /\ G Fn A ) -> S Fn A ) | 
						
							| 49 |  | fvco2 |  |-  ( ( S Fn A /\ a e. A ) -> ( ( H o. S ) ` a ) = ( H ` ( S ` a ) ) ) | 
						
							| 50 | 48 49 | sylan |  |-  ( ( ( F Fn A /\ G Fn A ) /\ a e. A ) -> ( ( H o. S ) ` a ) = ( H ` ( S ` a ) ) ) | 
						
							| 51 |  | fveq2 |  |-  ( x = a -> ( G ` x ) = ( G ` a ) ) | 
						
							| 52 | 24 51 | opeq12d |  |-  ( x = a -> <. ( F ` x ) , ( G ` x ) >. = <. ( F ` a ) , ( G ` a ) >. ) | 
						
							| 53 |  | eqid |  |-  ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) | 
						
							| 54 | 52 53 31 | fvmpt |  |-  ( a e. A -> ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ` a ) = <. ( F ` a ) , ( G ` a ) >. ) | 
						
							| 55 | 54 | adantl |  |-  ( ( ( F Fn A /\ G Fn A ) /\ a e. A ) -> ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ` a ) = <. ( F ` a ) , ( G ` a ) >. ) | 
						
							| 56 | 35 50 55 | 3eqtr4d |  |-  ( ( ( F Fn A /\ G Fn A ) /\ a e. A ) -> ( ( H o. S ) ` a ) = ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ` a ) ) | 
						
							| 57 | 56 | ralrimiva |  |-  ( ( F Fn A /\ G Fn A ) -> A. a e. A ( ( H o. S ) ` a ) = ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ` a ) ) | 
						
							| 58 |  | opex |  |-  <. ( F ` x ) , ( G ` y ) >. e. _V | 
						
							| 59 | 58 | a1i |  |-  ( ( ( F Fn A /\ G Fn A ) /\ ( x e. A /\ y e. A ) ) -> <. ( F ` x ) , ( G ` y ) >. e. _V ) | 
						
							| 60 | 59 | ralrimivva |  |-  ( ( F Fn A /\ G Fn A ) -> A. x e. A A. y e. A <. ( F ` x ) , ( G ` y ) >. e. _V ) | 
						
							| 61 |  | eqid |  |-  ( x e. A , y e. A |-> <. ( F ` x ) , ( G ` y ) >. ) = ( x e. A , y e. A |-> <. ( F ` x ) , ( G ` y ) >. ) | 
						
							| 62 | 61 | fnmpo |  |-  ( A. x e. A A. y e. A <. ( F ` x ) , ( G ` y ) >. e. _V -> ( x e. A , y e. A |-> <. ( F ` x ) , ( G ` y ) >. ) Fn ( A X. A ) ) | 
						
							| 63 | 60 62 | syl |  |-  ( ( F Fn A /\ G Fn A ) -> ( x e. A , y e. A |-> <. ( F ` x ) , ( G ` y ) >. ) Fn ( A X. A ) ) | 
						
							| 64 | 22 | fneq1d |  |-  ( ( F Fn A /\ G Fn A ) -> ( H Fn ( A X. A ) <-> ( x e. A , y e. A |-> <. ( F ` x ) , ( G ` y ) >. ) Fn ( A X. A ) ) ) | 
						
							| 65 | 63 64 | mpbird |  |-  ( ( F Fn A /\ G Fn A ) -> H Fn ( A X. A ) ) | 
						
							| 66 | 14 | a1i |  |-  ( ( ( F Fn A /\ G Fn A ) /\ a e. _V ) -> <. a , a >. e. _V ) | 
						
							| 67 | 66 | ralrimiva |  |-  ( ( F Fn A /\ G Fn A ) -> A. a e. _V <. a , a >. e. _V ) | 
						
							| 68 | 67 37 | syl |  |-  ( ( F Fn A /\ G Fn A ) -> ( a e. _V |-> <. a , a >. ) Fn _V ) | 
						
							| 69 | 68 40 41 | sylancl |  |-  ( ( F Fn A /\ G Fn A ) -> ( ( a e. _V |-> <. a , a >. ) |` A ) Fn A ) | 
						
							| 70 | 69 46 | sylibr |  |-  ( ( F Fn A /\ G Fn A ) -> S Fn A ) | 
						
							| 71 | 45 | rneqi |  |-  ran S = ran ( ( a e. _V |-> <. a , a >. ) |` A ) | 
						
							| 72 |  | mptima |  |-  ( ( a e. _V |-> <. a , a >. ) " A ) = ran ( a e. ( _V i^i A ) |-> <. a , a >. ) | 
						
							| 73 |  | df-ima |  |-  ( ( a e. _V |-> <. a , a >. ) " A ) = ran ( ( a e. _V |-> <. a , a >. ) |` A ) | 
						
							| 74 |  | eqid |  |-  ( a e. ( _V i^i A ) |-> <. a , a >. ) = ( a e. ( _V i^i A ) |-> <. a , a >. ) | 
						
							| 75 | 74 | rnmpt |  |-  ran ( a e. ( _V i^i A ) |-> <. a , a >. ) = { p | E. a e. ( _V i^i A ) p = <. a , a >. } | 
						
							| 76 | 72 73 75 | 3eqtr3i |  |-  ran ( ( a e. _V |-> <. a , a >. ) |` A ) = { p | E. a e. ( _V i^i A ) p = <. a , a >. } | 
						
							| 77 | 71 76 | eqtri |  |-  ran S = { p | E. a e. ( _V i^i A ) p = <. a , a >. } | 
						
							| 78 |  | elinel2 |  |-  ( a e. ( _V i^i A ) -> a e. A ) | 
						
							| 79 |  | simpl |  |-  ( ( a e. A /\ p = <. a , a >. ) -> a e. A ) | 
						
							| 80 | 79 79 | opelxpd |  |-  ( ( a e. A /\ p = <. a , a >. ) -> <. a , a >. e. ( A X. A ) ) | 
						
							| 81 |  | eleq1 |  |-  ( p = <. a , a >. -> ( p e. ( A X. A ) <-> <. a , a >. e. ( A X. A ) ) ) | 
						
							| 82 | 81 | adantl |  |-  ( ( a e. A /\ p = <. a , a >. ) -> ( p e. ( A X. A ) <-> <. a , a >. e. ( A X. A ) ) ) | 
						
							| 83 | 80 82 | mpbird |  |-  ( ( a e. A /\ p = <. a , a >. ) -> p e. ( A X. A ) ) | 
						
							| 84 | 83 | ex |  |-  ( a e. A -> ( p = <. a , a >. -> p e. ( A X. A ) ) ) | 
						
							| 85 | 78 84 | syl |  |-  ( a e. ( _V i^i A ) -> ( p = <. a , a >. -> p e. ( A X. A ) ) ) | 
						
							| 86 | 85 | rexlimiv |  |-  ( E. a e. ( _V i^i A ) p = <. a , a >. -> p e. ( A X. A ) ) | 
						
							| 87 | 86 | abssi |  |-  { p | E. a e. ( _V i^i A ) p = <. a , a >. } C_ ( A X. A ) | 
						
							| 88 | 87 | a1i |  |-  ( ( F Fn A /\ G Fn A ) -> { p | E. a e. ( _V i^i A ) p = <. a , a >. } C_ ( A X. A ) ) | 
						
							| 89 | 77 88 | eqsstrid |  |-  ( ( F Fn A /\ G Fn A ) -> ran S C_ ( A X. A ) ) | 
						
							| 90 |  | fnco |  |-  ( ( H Fn ( A X. A ) /\ S Fn A /\ ran S C_ ( A X. A ) ) -> ( H o. S ) Fn A ) | 
						
							| 91 | 65 70 89 90 | syl3anc |  |-  ( ( F Fn A /\ G Fn A ) -> ( H o. S ) Fn A ) | 
						
							| 92 |  | opex |  |-  <. ( F ` x ) , ( G ` x ) >. e. _V | 
						
							| 93 | 92 | a1i |  |-  ( ( ( F Fn A /\ G Fn A ) /\ x e. A ) -> <. ( F ` x ) , ( G ` x ) >. e. _V ) | 
						
							| 94 | 93 | ralrimiva |  |-  ( ( F Fn A /\ G Fn A ) -> A. x e. A <. ( F ` x ) , ( G ` x ) >. e. _V ) | 
						
							| 95 | 53 | fnmpt |  |-  ( A. x e. A <. ( F ` x ) , ( G ` x ) >. e. _V -> ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) Fn A ) | 
						
							| 96 | 94 95 | syl |  |-  ( ( F Fn A /\ G Fn A ) -> ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) Fn A ) | 
						
							| 97 |  | eqfnfv |  |-  ( ( ( H o. S ) Fn A /\ ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) Fn A ) -> ( ( H o. S ) = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) <-> A. a e. A ( ( H o. S ) ` a ) = ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ` a ) ) ) | 
						
							| 98 | 91 96 97 | syl2anc |  |-  ( ( F Fn A /\ G Fn A ) -> ( ( H o. S ) = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) <-> A. a e. A ( ( H o. S ) ` a ) = ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ` a ) ) ) | 
						
							| 99 | 57 98 | mpbird |  |-  ( ( F Fn A /\ G Fn A ) -> ( H o. S ) = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) |