| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsplitfpar.h | ⊢ 𝐻  =  ( ( ◡ ( 1st   ↾  ( V  ×  V ) )  ∘  ( 𝐹  ∘  ( 1st   ↾  ( V  ×  V ) ) ) )  ∩  ( ◡ ( 2nd   ↾  ( V  ×  V ) )  ∘  ( 𝐺  ∘  ( 2nd   ↾  ( V  ×  V ) ) ) ) ) | 
						
							| 2 |  | fsplitfpar.s | ⊢ 𝑆  =  ( ◡ ( 1st   ↾   I  )  ↾  𝐴 ) | 
						
							| 3 |  | fsplit | ⊢ ◡ ( 1st   ↾   I  )  =  ( 𝑥  ∈  V  ↦  〈 𝑥 ,  𝑥 〉 ) | 
						
							| 4 | 3 | reseq1i | ⊢ ( ◡ ( 1st   ↾   I  )  ↾  𝐴 )  =  ( ( 𝑥  ∈  V  ↦  〈 𝑥 ,  𝑥 〉 )  ↾  𝐴 ) | 
						
							| 5 | 2 4 | eqtri | ⊢ 𝑆  =  ( ( 𝑥  ∈  V  ↦  〈 𝑥 ,  𝑥 〉 )  ↾  𝐴 ) | 
						
							| 6 | 5 | fveq1i | ⊢ ( 𝑆 ‘ 𝑎 )  =  ( ( ( 𝑥  ∈  V  ↦  〈 𝑥 ,  𝑥 〉 )  ↾  𝐴 ) ‘ 𝑎 ) | 
						
							| 7 | 6 | a1i | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  ∧  𝑎  ∈  𝐴 )  →  ( 𝑆 ‘ 𝑎 )  =  ( ( ( 𝑥  ∈  V  ↦  〈 𝑥 ,  𝑥 〉 )  ↾  𝐴 ) ‘ 𝑎 ) ) | 
						
							| 8 |  | fvres | ⊢ ( 𝑎  ∈  𝐴  →  ( ( ( 𝑥  ∈  V  ↦  〈 𝑥 ,  𝑥 〉 )  ↾  𝐴 ) ‘ 𝑎 )  =  ( ( 𝑥  ∈  V  ↦  〈 𝑥 ,  𝑥 〉 ) ‘ 𝑎 ) ) | 
						
							| 9 |  | eqidd | ⊢ ( 𝑎  ∈  𝐴  →  ( 𝑥  ∈  V  ↦  〈 𝑥 ,  𝑥 〉 )  =  ( 𝑥  ∈  V  ↦  〈 𝑥 ,  𝑥 〉 ) ) | 
						
							| 10 |  | id | ⊢ ( 𝑥  =  𝑎  →  𝑥  =  𝑎 ) | 
						
							| 11 | 10 10 | opeq12d | ⊢ ( 𝑥  =  𝑎  →  〈 𝑥 ,  𝑥 〉  =  〈 𝑎 ,  𝑎 〉 ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝑎  ∈  𝐴  ∧  𝑥  =  𝑎 )  →  〈 𝑥 ,  𝑥 〉  =  〈 𝑎 ,  𝑎 〉 ) | 
						
							| 13 |  | elex | ⊢ ( 𝑎  ∈  𝐴  →  𝑎  ∈  V ) | 
						
							| 14 |  | opex | ⊢ 〈 𝑎 ,  𝑎 〉  ∈  V | 
						
							| 15 | 14 | a1i | ⊢ ( 𝑎  ∈  𝐴  →  〈 𝑎 ,  𝑎 〉  ∈  V ) | 
						
							| 16 | 9 12 13 15 | fvmptd | ⊢ ( 𝑎  ∈  𝐴  →  ( ( 𝑥  ∈  V  ↦  〈 𝑥 ,  𝑥 〉 ) ‘ 𝑎 )  =  〈 𝑎 ,  𝑎 〉 ) | 
						
							| 17 | 8 16 | eqtrd | ⊢ ( 𝑎  ∈  𝐴  →  ( ( ( 𝑥  ∈  V  ↦  〈 𝑥 ,  𝑥 〉 )  ↾  𝐴 ) ‘ 𝑎 )  =  〈 𝑎 ,  𝑎 〉 ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  ∧  𝑎  ∈  𝐴 )  →  ( ( ( 𝑥  ∈  V  ↦  〈 𝑥 ,  𝑥 〉 )  ↾  𝐴 ) ‘ 𝑎 )  =  〈 𝑎 ,  𝑎 〉 ) | 
						
							| 19 | 7 18 | eqtrd | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  ∧  𝑎  ∈  𝐴 )  →  ( 𝑆 ‘ 𝑎 )  =  〈 𝑎 ,  𝑎 〉 ) | 
						
							| 20 | 19 | fveq2d | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  ∧  𝑎  ∈  𝐴 )  →  ( 𝐻 ‘ ( 𝑆 ‘ 𝑎 ) )  =  ( 𝐻 ‘ 〈 𝑎 ,  𝑎 〉 ) ) | 
						
							| 21 |  | df-ov | ⊢ ( 𝑎 𝐻 𝑎 )  =  ( 𝐻 ‘ 〈 𝑎 ,  𝑎 〉 ) | 
						
							| 22 | 1 | fpar | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  →  𝐻  =  ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑦 ) 〉 ) ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  ∧  𝑎  ∈  𝐴 )  →  𝐻  =  ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑦 ) 〉 ) ) | 
						
							| 24 |  | fveq2 | ⊢ ( 𝑥  =  𝑎  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑎 ) ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( 𝑥  =  𝑎  ∧  𝑦  =  𝑎 )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑎 ) ) | 
						
							| 26 |  | fveq2 | ⊢ ( 𝑦  =  𝑎  →  ( 𝐺 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑎 ) ) | 
						
							| 27 | 26 | adantl | ⊢ ( ( 𝑥  =  𝑎  ∧  𝑦  =  𝑎 )  →  ( 𝐺 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑎 ) ) | 
						
							| 28 | 25 27 | opeq12d | ⊢ ( ( 𝑥  =  𝑎  ∧  𝑦  =  𝑎 )  →  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑦 ) 〉  =  〈 ( 𝐹 ‘ 𝑎 ) ,  ( 𝐺 ‘ 𝑎 ) 〉 ) | 
						
							| 29 | 28 | adantl | ⊢ ( ( ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  ∧  𝑎  ∈  𝐴 )  ∧  ( 𝑥  =  𝑎  ∧  𝑦  =  𝑎 ) )  →  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑦 ) 〉  =  〈 ( 𝐹 ‘ 𝑎 ) ,  ( 𝐺 ‘ 𝑎 ) 〉 ) | 
						
							| 30 |  | simpr | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  ∧  𝑎  ∈  𝐴 )  →  𝑎  ∈  𝐴 ) | 
						
							| 31 |  | opex | ⊢ 〈 ( 𝐹 ‘ 𝑎 ) ,  ( 𝐺 ‘ 𝑎 ) 〉  ∈  V | 
						
							| 32 | 31 | a1i | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  ∧  𝑎  ∈  𝐴 )  →  〈 ( 𝐹 ‘ 𝑎 ) ,  ( 𝐺 ‘ 𝑎 ) 〉  ∈  V ) | 
						
							| 33 | 23 29 30 30 32 | ovmpod | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  ∧  𝑎  ∈  𝐴 )  →  ( 𝑎 𝐻 𝑎 )  =  〈 ( 𝐹 ‘ 𝑎 ) ,  ( 𝐺 ‘ 𝑎 ) 〉 ) | 
						
							| 34 | 21 33 | eqtr3id | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  ∧  𝑎  ∈  𝐴 )  →  ( 𝐻 ‘ 〈 𝑎 ,  𝑎 〉 )  =  〈 ( 𝐹 ‘ 𝑎 ) ,  ( 𝐺 ‘ 𝑎 ) 〉 ) | 
						
							| 35 | 20 34 | eqtrd | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  ∧  𝑎  ∈  𝐴 )  →  ( 𝐻 ‘ ( 𝑆 ‘ 𝑎 ) )  =  〈 ( 𝐹 ‘ 𝑎 ) ,  ( 𝐺 ‘ 𝑎 ) 〉 ) | 
						
							| 36 |  | eqid | ⊢ ( 𝑎  ∈  V  ↦  〈 𝑎 ,  𝑎 〉 )  =  ( 𝑎  ∈  V  ↦  〈 𝑎 ,  𝑎 〉 ) | 
						
							| 37 | 36 | fnmpt | ⊢ ( ∀ 𝑎  ∈  V 〈 𝑎 ,  𝑎 〉  ∈  V  →  ( 𝑎  ∈  V  ↦  〈 𝑎 ,  𝑎 〉 )  Fn  V ) | 
						
							| 38 | 14 | a1i | ⊢ ( 𝑎  ∈  V  →  〈 𝑎 ,  𝑎 〉  ∈  V ) | 
						
							| 39 | 37 38 | mprg | ⊢ ( 𝑎  ∈  V  ↦  〈 𝑎 ,  𝑎 〉 )  Fn  V | 
						
							| 40 |  | ssv | ⊢ 𝐴  ⊆  V | 
						
							| 41 |  | fnssres | ⊢ ( ( ( 𝑎  ∈  V  ↦  〈 𝑎 ,  𝑎 〉 )  Fn  V  ∧  𝐴  ⊆  V )  →  ( ( 𝑎  ∈  V  ↦  〈 𝑎 ,  𝑎 〉 )  ↾  𝐴 )  Fn  𝐴 ) | 
						
							| 42 | 39 40 41 | mp2an | ⊢ ( ( 𝑎  ∈  V  ↦  〈 𝑎 ,  𝑎 〉 )  ↾  𝐴 )  Fn  𝐴 | 
						
							| 43 |  | fsplit | ⊢ ◡ ( 1st   ↾   I  )  =  ( 𝑎  ∈  V  ↦  〈 𝑎 ,  𝑎 〉 ) | 
						
							| 44 | 43 | reseq1i | ⊢ ( ◡ ( 1st   ↾   I  )  ↾  𝐴 )  =  ( ( 𝑎  ∈  V  ↦  〈 𝑎 ,  𝑎 〉 )  ↾  𝐴 ) | 
						
							| 45 | 2 44 | eqtri | ⊢ 𝑆  =  ( ( 𝑎  ∈  V  ↦  〈 𝑎 ,  𝑎 〉 )  ↾  𝐴 ) | 
						
							| 46 | 45 | fneq1i | ⊢ ( 𝑆  Fn  𝐴  ↔  ( ( 𝑎  ∈  V  ↦  〈 𝑎 ,  𝑎 〉 )  ↾  𝐴 )  Fn  𝐴 ) | 
						
							| 47 | 42 46 | mpbir | ⊢ 𝑆  Fn  𝐴 | 
						
							| 48 | 47 | a1i | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  →  𝑆  Fn  𝐴 ) | 
						
							| 49 |  | fvco2 | ⊢ ( ( 𝑆  Fn  𝐴  ∧  𝑎  ∈  𝐴 )  →  ( ( 𝐻  ∘  𝑆 ) ‘ 𝑎 )  =  ( 𝐻 ‘ ( 𝑆 ‘ 𝑎 ) ) ) | 
						
							| 50 | 48 49 | sylan | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  ∧  𝑎  ∈  𝐴 )  →  ( ( 𝐻  ∘  𝑆 ) ‘ 𝑎 )  =  ( 𝐻 ‘ ( 𝑆 ‘ 𝑎 ) ) ) | 
						
							| 51 |  | fveq2 | ⊢ ( 𝑥  =  𝑎  →  ( 𝐺 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑎 ) ) | 
						
							| 52 | 24 51 | opeq12d | ⊢ ( 𝑥  =  𝑎  →  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉  =  〈 ( 𝐹 ‘ 𝑎 ) ,  ( 𝐺 ‘ 𝑎 ) 〉 ) | 
						
							| 53 |  | eqid | ⊢ ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 )  =  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) | 
						
							| 54 | 52 53 31 | fvmpt | ⊢ ( 𝑎  ∈  𝐴  →  ( ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑎 )  =  〈 ( 𝐹 ‘ 𝑎 ) ,  ( 𝐺 ‘ 𝑎 ) 〉 ) | 
						
							| 55 | 54 | adantl | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  ∧  𝑎  ∈  𝐴 )  →  ( ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑎 )  =  〈 ( 𝐹 ‘ 𝑎 ) ,  ( 𝐺 ‘ 𝑎 ) 〉 ) | 
						
							| 56 | 35 50 55 | 3eqtr4d | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  ∧  𝑎  ∈  𝐴 )  →  ( ( 𝐻  ∘  𝑆 ) ‘ 𝑎 )  =  ( ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑎 ) ) | 
						
							| 57 | 56 | ralrimiva | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  →  ∀ 𝑎  ∈  𝐴 ( ( 𝐻  ∘  𝑆 ) ‘ 𝑎 )  =  ( ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑎 ) ) | 
						
							| 58 |  | opex | ⊢ 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑦 ) 〉  ∈  V | 
						
							| 59 | 58 | a1i | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  →  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑦 ) 〉  ∈  V ) | 
						
							| 60 | 59 | ralrimivva | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  →  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑦 ) 〉  ∈  V ) | 
						
							| 61 |  | eqid | ⊢ ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑦 ) 〉 )  =  ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑦 ) 〉 ) | 
						
							| 62 | 61 | fnmpo | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑦 ) 〉  ∈  V  →  ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑦 ) 〉 )  Fn  ( 𝐴  ×  𝐴 ) ) | 
						
							| 63 | 60 62 | syl | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  →  ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑦 ) 〉 )  Fn  ( 𝐴  ×  𝐴 ) ) | 
						
							| 64 | 22 | fneq1d | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  →  ( 𝐻  Fn  ( 𝐴  ×  𝐴 )  ↔  ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑦 ) 〉 )  Fn  ( 𝐴  ×  𝐴 ) ) ) | 
						
							| 65 | 63 64 | mpbird | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  →  𝐻  Fn  ( 𝐴  ×  𝐴 ) ) | 
						
							| 66 | 14 | a1i | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  ∧  𝑎  ∈  V )  →  〈 𝑎 ,  𝑎 〉  ∈  V ) | 
						
							| 67 | 66 | ralrimiva | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  →  ∀ 𝑎  ∈  V 〈 𝑎 ,  𝑎 〉  ∈  V ) | 
						
							| 68 | 67 37 | syl | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  →  ( 𝑎  ∈  V  ↦  〈 𝑎 ,  𝑎 〉 )  Fn  V ) | 
						
							| 69 | 68 40 41 | sylancl | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  →  ( ( 𝑎  ∈  V  ↦  〈 𝑎 ,  𝑎 〉 )  ↾  𝐴 )  Fn  𝐴 ) | 
						
							| 70 | 69 46 | sylibr | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  →  𝑆  Fn  𝐴 ) | 
						
							| 71 | 45 | rneqi | ⊢ ran  𝑆  =  ran  ( ( 𝑎  ∈  V  ↦  〈 𝑎 ,  𝑎 〉 )  ↾  𝐴 ) | 
						
							| 72 |  | mptima | ⊢ ( ( 𝑎  ∈  V  ↦  〈 𝑎 ,  𝑎 〉 )  “  𝐴 )  =  ran  ( 𝑎  ∈  ( V  ∩  𝐴 )  ↦  〈 𝑎 ,  𝑎 〉 ) | 
						
							| 73 |  | df-ima | ⊢ ( ( 𝑎  ∈  V  ↦  〈 𝑎 ,  𝑎 〉 )  “  𝐴 )  =  ran  ( ( 𝑎  ∈  V  ↦  〈 𝑎 ,  𝑎 〉 )  ↾  𝐴 ) | 
						
							| 74 |  | eqid | ⊢ ( 𝑎  ∈  ( V  ∩  𝐴 )  ↦  〈 𝑎 ,  𝑎 〉 )  =  ( 𝑎  ∈  ( V  ∩  𝐴 )  ↦  〈 𝑎 ,  𝑎 〉 ) | 
						
							| 75 | 74 | rnmpt | ⊢ ran  ( 𝑎  ∈  ( V  ∩  𝐴 )  ↦  〈 𝑎 ,  𝑎 〉 )  =  { 𝑝  ∣  ∃ 𝑎  ∈  ( V  ∩  𝐴 ) 𝑝  =  〈 𝑎 ,  𝑎 〉 } | 
						
							| 76 | 72 73 75 | 3eqtr3i | ⊢ ran  ( ( 𝑎  ∈  V  ↦  〈 𝑎 ,  𝑎 〉 )  ↾  𝐴 )  =  { 𝑝  ∣  ∃ 𝑎  ∈  ( V  ∩  𝐴 ) 𝑝  =  〈 𝑎 ,  𝑎 〉 } | 
						
							| 77 | 71 76 | eqtri | ⊢ ran  𝑆  =  { 𝑝  ∣  ∃ 𝑎  ∈  ( V  ∩  𝐴 ) 𝑝  =  〈 𝑎 ,  𝑎 〉 } | 
						
							| 78 |  | elinel2 | ⊢ ( 𝑎  ∈  ( V  ∩  𝐴 )  →  𝑎  ∈  𝐴 ) | 
						
							| 79 |  | simpl | ⊢ ( ( 𝑎  ∈  𝐴  ∧  𝑝  =  〈 𝑎 ,  𝑎 〉 )  →  𝑎  ∈  𝐴 ) | 
						
							| 80 | 79 79 | opelxpd | ⊢ ( ( 𝑎  ∈  𝐴  ∧  𝑝  =  〈 𝑎 ,  𝑎 〉 )  →  〈 𝑎 ,  𝑎 〉  ∈  ( 𝐴  ×  𝐴 ) ) | 
						
							| 81 |  | eleq1 | ⊢ ( 𝑝  =  〈 𝑎 ,  𝑎 〉  →  ( 𝑝  ∈  ( 𝐴  ×  𝐴 )  ↔  〈 𝑎 ,  𝑎 〉  ∈  ( 𝐴  ×  𝐴 ) ) ) | 
						
							| 82 | 81 | adantl | ⊢ ( ( 𝑎  ∈  𝐴  ∧  𝑝  =  〈 𝑎 ,  𝑎 〉 )  →  ( 𝑝  ∈  ( 𝐴  ×  𝐴 )  ↔  〈 𝑎 ,  𝑎 〉  ∈  ( 𝐴  ×  𝐴 ) ) ) | 
						
							| 83 | 80 82 | mpbird | ⊢ ( ( 𝑎  ∈  𝐴  ∧  𝑝  =  〈 𝑎 ,  𝑎 〉 )  →  𝑝  ∈  ( 𝐴  ×  𝐴 ) ) | 
						
							| 84 | 83 | ex | ⊢ ( 𝑎  ∈  𝐴  →  ( 𝑝  =  〈 𝑎 ,  𝑎 〉  →  𝑝  ∈  ( 𝐴  ×  𝐴 ) ) ) | 
						
							| 85 | 78 84 | syl | ⊢ ( 𝑎  ∈  ( V  ∩  𝐴 )  →  ( 𝑝  =  〈 𝑎 ,  𝑎 〉  →  𝑝  ∈  ( 𝐴  ×  𝐴 ) ) ) | 
						
							| 86 | 85 | rexlimiv | ⊢ ( ∃ 𝑎  ∈  ( V  ∩  𝐴 ) 𝑝  =  〈 𝑎 ,  𝑎 〉  →  𝑝  ∈  ( 𝐴  ×  𝐴 ) ) | 
						
							| 87 | 86 | abssi | ⊢ { 𝑝  ∣  ∃ 𝑎  ∈  ( V  ∩  𝐴 ) 𝑝  =  〈 𝑎 ,  𝑎 〉 }  ⊆  ( 𝐴  ×  𝐴 ) | 
						
							| 88 | 87 | a1i | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  →  { 𝑝  ∣  ∃ 𝑎  ∈  ( V  ∩  𝐴 ) 𝑝  =  〈 𝑎 ,  𝑎 〉 }  ⊆  ( 𝐴  ×  𝐴 ) ) | 
						
							| 89 | 77 88 | eqsstrid | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  →  ran  𝑆  ⊆  ( 𝐴  ×  𝐴 ) ) | 
						
							| 90 |  | fnco | ⊢ ( ( 𝐻  Fn  ( 𝐴  ×  𝐴 )  ∧  𝑆  Fn  𝐴  ∧  ran  𝑆  ⊆  ( 𝐴  ×  𝐴 ) )  →  ( 𝐻  ∘  𝑆 )  Fn  𝐴 ) | 
						
							| 91 | 65 70 89 90 | syl3anc | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  →  ( 𝐻  ∘  𝑆 )  Fn  𝐴 ) | 
						
							| 92 |  | opex | ⊢ 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉  ∈  V | 
						
							| 93 | 92 | a1i | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  ∧  𝑥  ∈  𝐴 )  →  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉  ∈  V ) | 
						
							| 94 | 93 | ralrimiva | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  →  ∀ 𝑥  ∈  𝐴 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉  ∈  V ) | 
						
							| 95 | 53 | fnmpt | ⊢ ( ∀ 𝑥  ∈  𝐴 〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉  ∈  V  →  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 )  Fn  𝐴 ) | 
						
							| 96 | 94 95 | syl | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  →  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 )  Fn  𝐴 ) | 
						
							| 97 |  | eqfnfv | ⊢ ( ( ( 𝐻  ∘  𝑆 )  Fn  𝐴  ∧  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 )  Fn  𝐴 )  →  ( ( 𝐻  ∘  𝑆 )  =  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 )  ↔  ∀ 𝑎  ∈  𝐴 ( ( 𝐻  ∘  𝑆 ) ‘ 𝑎 )  =  ( ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑎 ) ) ) | 
						
							| 98 | 91 96 97 | syl2anc | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  →  ( ( 𝐻  ∘  𝑆 )  =  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 )  ↔  ∀ 𝑎  ∈  𝐴 ( ( 𝐻  ∘  𝑆 ) ‘ 𝑎 )  =  ( ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑎 ) ) ) | 
						
							| 99 | 57 98 | mpbird | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  →  ( 𝐻  ∘  𝑆 )  =  ( 𝑥  ∈  𝐴  ↦  〈 ( 𝐹 ‘ 𝑥 ) ,  ( 𝐺 ‘ 𝑥 ) 〉 ) ) |