Metamath Proof Explorer


Theorem fprodcl2lem

Description: Finite product closure lemma. (Contributed by Scott Fenton, 14-Dec-2017)

Ref Expression
Hypotheses fprodcllem.1 φS
fprodcllem.2 φxSySxyS
fprodcllem.3 φAFin
fprodcllem.4 φkABS
fprodcl2lem.5 φA
Assertion fprodcl2lem φkABS

Proof

Step Hyp Ref Expression
1 fprodcllem.1 φS
2 fprodcllem.2 φxSySxyS
3 fprodcllem.3 φAFin
4 fprodcllem.4 φkABS
5 fprodcl2lem.5 φA
6 5 a1d φ¬kABSA
7 6 necon4bd φA=kABS
8 prodfc mAkABm=kAB
9 fveq2 m=fxkABm=kABfx
10 simprl φAf:1A1-1 ontoAA
11 simprr φAf:1A1-1 ontoAf:1A1-1 ontoA
12 1 adantr φkAS
13 12 4 sseldd φkAB
14 13 fmpttd φkAB:A
15 14 ffvelcdmda φmAkABm
16 15 adantlr φAf:1A1-1 ontoAmAkABm
17 f1of f:1A1-1 ontoAf:1AA
18 17 ad2antll φAf:1A1-1 ontoAf:1AA
19 fvco3 f:1AAx1AkABfx=kABfx
20 18 19 sylan φAf:1A1-1 ontoAx1AkABfx=kABfx
21 9 10 11 16 20 fprod φAf:1A1-1 ontoAmAkABm=seq1×kABfA
22 8 21 eqtr3id φAf:1A1-1 ontoAkAB=seq1×kABfA
23 nnuz =1
24 10 23 eleqtrdi φAf:1A1-1 ontoAA1
25 4 fmpttd φkAB:AS
26 fco kAB:ASf:1AAkABf:1AS
27 25 18 26 syl2an2r φAf:1A1-1 ontoAkABf:1AS
28 27 ffvelcdmda φAf:1A1-1 ontoAx1AkABfxS
29 2 adantlr φAf:1A1-1 ontoAxSySxyS
30 24 28 29 seqcl φAf:1A1-1 ontoAseq1×kABfAS
31 22 30 eqeltrd φAf:1A1-1 ontoAkABS
32 31 expr φAf:1A1-1 ontoAkABS
33 32 exlimdv φAff:1A1-1 ontoAkABS
34 33 expimpd φAff:1A1-1 ontoAkABS
35 fz1f1o AFinA=Aff:1A1-1 ontoA
36 3 35 syl φA=Aff:1A1-1 ontoA
37 7 34 36 mpjaod φkABS