| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fprodcllem.1 |
|
| 2 |
|
fprodcllem.2 |
|
| 3 |
|
fprodcllem.3 |
|
| 4 |
|
fprodcllem.4 |
|
| 5 |
|
fprodcl2lem.5 |
|
| 6 |
5
|
a1d |
|
| 7 |
6
|
necon4bd |
|
| 8 |
|
prodfc |
|
| 9 |
|
fveq2 |
|
| 10 |
|
simprl |
|
| 11 |
|
simprr |
|
| 12 |
1
|
adantr |
|
| 13 |
12 4
|
sseldd |
|
| 14 |
13
|
fmpttd |
|
| 15 |
14
|
ffvelcdmda |
|
| 16 |
15
|
adantlr |
|
| 17 |
|
f1of |
|
| 18 |
17
|
ad2antll |
|
| 19 |
|
fvco3 |
|
| 20 |
18 19
|
sylan |
|
| 21 |
9 10 11 16 20
|
fprod |
|
| 22 |
8 21
|
eqtr3id |
|
| 23 |
|
nnuz |
|
| 24 |
10 23
|
eleqtrdi |
|
| 25 |
4
|
fmpttd |
|
| 26 |
|
fco |
|
| 27 |
25 18 26
|
syl2an2r |
|
| 28 |
27
|
ffvelcdmda |
|
| 29 |
2
|
adantlr |
|
| 30 |
24 28 29
|
seqcl |
|
| 31 |
22 30
|
eqeltrd |
|
| 32 |
31
|
expr |
|
| 33 |
32
|
exlimdv |
|
| 34 |
33
|
expimpd |
|
| 35 |
|
fz1f1o |
|
| 36 |
3 35
|
syl |
|
| 37 |
7 34 36
|
mpjaod |
|