Description: Transform a product region using the converse operation. (Contributed by Scott Fenton, 1-Feb-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fprodcnv.1 | |
|
fprodcnv.2 | |
||
fprodcnv.3 | |
||
fprodcnv.4 | |
||
fprodcnv.5 | |
||
Assertion | fprodcnv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fprodcnv.1 | |
|
2 | fprodcnv.2 | |
|
3 | fprodcnv.3 | |
|
4 | fprodcnv.4 | |
|
5 | fprodcnv.5 | |
|
6 | csbeq1a | |
|
7 | fvex | |
|
8 | fvex | |
|
9 | opex | |
|
10 | 9 1 | csbie | |
11 | opeq12 | |
|
12 | 11 | csbeq1d | |
13 | 10 12 | eqtr3id | |
14 | 7 8 13 | csbie2 | |
15 | 6 14 | eqtr4di | |
16 | cnvfi | |
|
17 | 3 16 | syl | |
18 | relcnv | |
|
19 | cnvf1o | |
|
20 | 18 19 | ax-mp | |
21 | dfrel2 | |
|
22 | 4 21 | sylib | |
23 | 22 | f1oeq3d | |
24 | 20 23 | mpbii | |
25 | 1st2nd | |
|
26 | 18 25 | mpan | |
27 | 26 | fveq2d | |
28 | 26 | eleq1d | |
29 | 28 | ibi | |
30 | sneq | |
|
31 | 30 | cnveqd | |
32 | 31 | unieqd | |
33 | opswap | |
|
34 | 32 33 | eqtrdi | |
35 | eqid | |
|
36 | opex | |
|
37 | 34 35 36 | fvmpt | |
38 | 29 37 | syl | |
39 | 27 38 | eqtrd | |
40 | 39 | adantl | |
41 | 15 17 24 40 5 | fprodf1o | |
42 | csbeq1a | |
|
43 | 26 42 | syl | |
44 | opex | |
|
45 | 44 2 | csbie | |
46 | opeq12 | |
|
47 | 46 | ancoms | |
48 | 47 | csbeq1d | |
49 | 45 48 | eqtr3id | |
50 | 7 8 49 | csbie2 | |
51 | 43 50 | eqtr4di | |
52 | 51 | prodeq2i | |
53 | 41 52 | eqtr4di | |