| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fprodsplit.1 |  | 
						
							| 2 |  | fprodsplit.2 |  | 
						
							| 3 |  | fprodsplit.3 |  | 
						
							| 4 |  | fprodsplit.4 |  | 
						
							| 5 |  | iftrue |  | 
						
							| 6 | 5 | prodeq2i |  | 
						
							| 7 |  | ssun1 |  | 
						
							| 8 | 7 2 | sseqtrrid |  | 
						
							| 9 | 5 | adantl |  | 
						
							| 10 | 8 | sselda |  | 
						
							| 11 | 10 4 | syldan |  | 
						
							| 12 | 9 11 | eqeltrd |  | 
						
							| 13 |  | eldifn |  | 
						
							| 14 | 13 | iffalsed |  | 
						
							| 15 | 14 | adantl |  | 
						
							| 16 | 8 12 15 3 | fprodss |  | 
						
							| 17 | 6 16 | eqtr3id |  | 
						
							| 18 |  | iftrue |  | 
						
							| 19 | 18 | prodeq2i |  | 
						
							| 20 |  | ssun2 |  | 
						
							| 21 | 20 2 | sseqtrrid |  | 
						
							| 22 | 18 | adantl |  | 
						
							| 23 | 21 | sselda |  | 
						
							| 24 | 23 4 | syldan |  | 
						
							| 25 | 22 24 | eqeltrd |  | 
						
							| 26 |  | eldifn |  | 
						
							| 27 | 26 | iffalsed |  | 
						
							| 28 | 27 | adantl |  | 
						
							| 29 | 21 25 28 3 | fprodss |  | 
						
							| 30 | 19 29 | eqtr3id |  | 
						
							| 31 | 17 30 | oveq12d |  | 
						
							| 32 |  | ax-1cn |  | 
						
							| 33 |  | ifcl |  | 
						
							| 34 | 4 32 33 | sylancl |  | 
						
							| 35 |  | ifcl |  | 
						
							| 36 | 4 32 35 | sylancl |  | 
						
							| 37 | 3 34 36 | fprodmul |  | 
						
							| 38 | 2 | eleq2d |  | 
						
							| 39 |  | elun |  | 
						
							| 40 | 38 39 | bitrdi |  | 
						
							| 41 | 40 | biimpa |  | 
						
							| 42 |  | disjel |  | 
						
							| 43 | 1 42 | sylan |  | 
						
							| 44 | 43 | iffalsed |  | 
						
							| 45 | 9 44 | oveq12d |  | 
						
							| 46 | 11 | mulridd |  | 
						
							| 47 | 45 46 | eqtrd |  | 
						
							| 48 | 43 | ex |  | 
						
							| 49 | 48 | con2d |  | 
						
							| 50 | 49 | imp |  | 
						
							| 51 | 50 | iffalsed |  | 
						
							| 52 | 51 22 | oveq12d |  | 
						
							| 53 | 24 | mullidd |  | 
						
							| 54 | 52 53 | eqtrd |  | 
						
							| 55 | 47 54 | jaodan |  | 
						
							| 56 | 41 55 | syldan |  | 
						
							| 57 | 56 | prodeq2dv |  | 
						
							| 58 | 31 37 57 | 3eqtr2rd |  |