Metamath Proof Explorer


Theorem frecseq123

Description: Equality theorem for the well-founded recursion generator. (Contributed by Scott Fenton, 23-Dec-2021)

Ref Expression
Assertion frecseq123 R=SA=BF=GfrecsRAF=frecsSBG

Proof

Step Hyp Ref Expression
1 simp2 R=SA=BF=GA=B
2 1 sseq2d R=SA=BF=GxAxB
3 equid y=y
4 predeq123 R=SA=By=yPredRAy=PredSBy
5 3 4 mp3an3 R=SA=BPredRAy=PredSBy
6 5 3adant3 R=SA=BF=GPredRAy=PredSBy
7 6 sseq1d R=SA=BF=GPredRAyxPredSByx
8 7 ralbidv R=SA=BF=GyxPredRAyxyxPredSByx
9 2 8 anbi12d R=SA=BF=GxAyxPredRAyxxByxPredSByx
10 simp3 R=SA=BF=GF=G
11 10 oveqd R=SA=BF=GyFfPredRAy=yGfPredRAy
12 6 reseq2d R=SA=BF=GfPredRAy=fPredSBy
13 12 oveq2d R=SA=BF=GyGfPredRAy=yGfPredSBy
14 11 13 eqtrd R=SA=BF=GyFfPredRAy=yGfPredSBy
15 14 eqeq2d R=SA=BF=Gfy=yFfPredRAyfy=yGfPredSBy
16 15 ralbidv R=SA=BF=Gyxfy=yFfPredRAyyxfy=yGfPredSBy
17 9 16 3anbi23d R=SA=BF=GfFnxxAyxPredRAyxyxfy=yFfPredRAyfFnxxByxPredSByxyxfy=yGfPredSBy
18 17 exbidv R=SA=BF=GxfFnxxAyxPredRAyxyxfy=yFfPredRAyxfFnxxByxPredSByxyxfy=yGfPredSBy
19 18 abbidv R=SA=BF=Gf|xfFnxxAyxPredRAyxyxfy=yFfPredRAy=f|xfFnxxByxPredSByxyxfy=yGfPredSBy
20 19 unieqd R=SA=BF=Gf|xfFnxxAyxPredRAyxyxfy=yFfPredRAy=f|xfFnxxByxPredSByxyxfy=yGfPredSBy
21 df-frecs frecsRAF=f|xfFnxxAyxPredRAyxyxfy=yFfPredRAy
22 df-frecs frecsSBG=f|xfFnxxByxPredSByxyxfy=yGfPredSBy
23 20 21 22 3eqtr4g R=SA=BF=GfrecsRAF=frecsSBG