| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 |  | 
						
							| 2 |  | inss1 |  | 
						
							| 3 |  | fssres |  | 
						
							| 4 | 1 2 3 | sylancl |  | 
						
							| 5 |  | difss |  | 
						
							| 6 |  | fssres |  | 
						
							| 7 | 1 5 6 | sylancl |  | 
						
							| 8 |  | simp2 |  | 
						
							| 9 |  | difss |  | 
						
							| 10 |  | fssres |  | 
						
							| 11 | 8 9 10 | sylancl |  | 
						
							| 12 |  | indifdir |  | 
						
							| 13 |  | disjdif |  | 
						
							| 14 | 13 | difeq1i |  | 
						
							| 15 |  | 0dif |  | 
						
							| 16 | 12 14 15 | 3eqtri |  | 
						
							| 17 | 16 | a1i |  | 
						
							| 18 | 7 11 17 | fun2d |  | 
						
							| 19 |  | indi |  | 
						
							| 20 |  | inass |  | 
						
							| 21 |  | disjdif |  | 
						
							| 22 | 21 | ineq2i |  | 
						
							| 23 |  | in0 |  | 
						
							| 24 | 20 22 23 | 3eqtri |  | 
						
							| 25 |  | incom |  | 
						
							| 26 | 25 | ineq1i |  | 
						
							| 27 |  | inass |  | 
						
							| 28 | 13 | ineq2i |  | 
						
							| 29 |  | in0 |  | 
						
							| 30 | 27 28 29 | 3eqtri |  | 
						
							| 31 | 26 30 | eqtri |  | 
						
							| 32 | 24 31 | uneq12i |  | 
						
							| 33 |  | un0 |  | 
						
							| 34 | 19 32 33 | 3eqtri |  | 
						
							| 35 | 34 | a1i |  | 
						
							| 36 | 4 18 35 | fun2d |  | 
						
							| 37 |  | un12 |  | 
						
							| 38 | 25 | uneq1i |  | 
						
							| 39 |  | inundif |  | 
						
							| 40 | 38 39 | eqtri |  | 
						
							| 41 | 40 | uneq2i |  | 
						
							| 42 |  | undif1 |  | 
						
							| 43 | 37 41 42 | 3eqtri |  | 
						
							| 44 | 43 | feq2i |  | 
						
							| 45 |  | ffn |  | 
						
							| 46 |  | ffn |  | 
						
							| 47 |  | id |  | 
						
							| 48 |  | resasplit |  | 
						
							| 49 | 45 46 47 48 | syl3an |  | 
						
							| 50 | 49 | feq1d |  | 
						
							| 51 | 44 50 | bitr4id |  | 
						
							| 52 | 36 51 | mpbid |  |