Metamath Proof Explorer


Theorem fresaun

Description: The union of two functions which agree on their common domain is a function. (Contributed by Stefan O'Rear, 9-Oct-2014)

Ref Expression
Assertion fresaun F:ACG:BCFAB=GABFG:ABC

Proof

Step Hyp Ref Expression
1 simp1 F:ACG:BCFAB=GABF:AC
2 inss1 ABA
3 fssres F:ACABAFAB:ABC
4 1 2 3 sylancl F:ACG:BCFAB=GABFAB:ABC
5 difss ABA
6 fssres F:ACABAFAB:ABC
7 1 5 6 sylancl F:ACG:BCFAB=GABFAB:ABC
8 simp2 F:ACG:BCFAB=GABG:BC
9 difss BAB
10 fssres G:BCBABGBA:BAC
11 8 9 10 sylancl F:ACG:BCFAB=GABGBA:BAC
12 indifdir ABBA=ABABBA
13 disjdif ABA=
14 13 difeq1i ABABBA=BBA
15 0dif BBA=
16 12 14 15 3eqtri ABBA=
17 16 a1i F:ACG:BCFAB=GABABBA=
18 7 11 17 fun2d F:ACG:BCFAB=GABFABGBA:ABBAC
19 indi ABABBA=ABABABBA
20 inass ABAB=ABAB
21 disjdif BAB=
22 21 ineq2i ABAB=A
23 in0 A=
24 20 22 23 3eqtri ABAB=
25 incom AB=BA
26 25 ineq1i ABBA=BABA
27 inass BABA=BABA
28 13 ineq2i BABA=B
29 in0 B=
30 27 28 29 3eqtri BABA=
31 26 30 eqtri ABBA=
32 24 31 uneq12i ABABABBA=
33 un0 =
34 19 32 33 3eqtri ABABBA=
35 34 a1i F:ACG:BCFAB=GABABABBA=
36 4 18 35 fun2d F:ACG:BCFAB=GABFABFABGBA:ABABBAC
37 un12 ABABBA=ABABBA
38 25 uneq1i ABBA=BABA
39 inundif BABA=B
40 38 39 eqtri ABBA=B
41 40 uneq2i ABABBA=ABB
42 undif1 ABB=AB
43 37 41 42 3eqtri ABABBA=AB
44 43 feq2i FABFABGBA:ABABBACFABFABGBA:ABC
45 ffn F:ACFFnA
46 ffn G:BCGFnB
47 id FAB=GABFAB=GAB
48 resasplit FFnAGFnBFAB=GABFG=FABFABGBA
49 45 46 47 48 syl3an F:ACG:BCFAB=GABFG=FABFABGBA
50 49 feq1d F:ACG:BCFAB=GABFG:ABCFABFABGBA:ABC
51 44 50 bitr4id F:ACG:BCFAB=GABFABFABGBA:ABABBACFG:ABC
52 36 51 mpbid F:ACG:BCFAB=GABFG:ABC