Metamath Proof Explorer


Theorem frgrwopreglem5ALT

Description: Alternate direct proof of frgrwopreglem5 , not using frgrwopreglem5a . This proof would be even a little bit shorter than the proof of frgrwopreglem5 without using frgrwopreglem5lem . (Contributed by Alexander van der Vekens, 31-Dec-2017) (Revised by AV, 3-Jan-2022) (Proof shortened by AV, 5-Feb-2022) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses frgrwopreg.v V=VtxG
frgrwopreg.d D=VtxDegG
frgrwopreg.a A=xV|Dx=K
frgrwopreg.b B=VA
frgrwopreg.e E=EdgG
Assertion frgrwopreglem5ALT GFriendGraph1<A1<BaAxAbByBaxbyabEbxExyEyaE

Proof

Step Hyp Ref Expression
1 frgrwopreg.v V=VtxG
2 frgrwopreg.d D=VtxDegG
3 frgrwopreg.a A=xV|Dx=K
4 frgrwopreg.b B=VA
5 frgrwopreg.e E=EdgG
6 simpllr GFriendGraphaxaAxAbByBax
7 6 anim1i GFriendGraphaxaAxAbByBbyaxby
8 1 2 3 4 5 frgrwopreglem4 GFriendGraphzAbBzbE
9 preq1 z=azb=ab
10 9 eleq1d z=azbEabE
11 10 ralbidv z=abBzbEbBabE
12 11 cbvralvw zAbBzbEaAbBabE
13 rsp2 aAbBabEaAbBabE
14 13 com12 aAbBaAbBabEabE
15 14 ad2ant2r aAxAbByBaAbBabEabE
16 12 15 biimtrid aAxAbByBzAbBzbEabE
17 16 imp aAxAbByBzAbBzbEabE
18 prcom bx=xb
19 preq1 z=xzb=xb
20 19 eleq1d z=xzbExbE
21 20 ralbidv z=xbBzbEbBxbE
22 21 cbvralvw zAbBzbExAbBxbE
23 rsp2 xAbBxbExAbBxbE
24 22 23 sylbi zAbBzbExAbBxbE
25 24 com12 xAbBzAbBzbExbE
26 25 ad2ant2lr aAxAbByBzAbBzbExbE
27 26 imp aAxAbByBzAbBzbExbE
28 18 27 eqeltrid aAxAbByBzAbBzbEbxE
29 17 28 jca aAxAbByBzAbBzbEabEbxE
30 29 expcom zAbBzbEaAxAbByBabEbxE
31 8 30 syl GFriendGraphaAxAbByBabEbxE
32 31 adantr GFriendGraphaxaAxAbByBabEbxE
33 32 impl GFriendGraphaxaAxAbByBabEbxE
34 33 adantr GFriendGraphaxaAxAbByBbyabEbxE
35 preq2 b=yxb=xy
36 35 eleq1d b=yxbExyE
37 20 36 rspc2v xAyBzAbBzbExyE
38 37 ad2ant2l aAxAbByBzAbBzbExyE
39 38 impcom zAbBzbEaAxAbByBxyE
40 prcom ya=ay
41 preq2 b=yab=ay
42 41 eleq1d b=yabEayE
43 10 42 rspc2v aAyBzAbBzbEayE
44 43 ad2ant2rl aAxAbByBzAbBzbEayE
45 44 impcom zAbBzbEaAxAbByBayE
46 40 45 eqeltrid zAbBzbEaAxAbByByaE
47 39 46 jca zAbBzbEaAxAbByBxyEyaE
48 47 ex zAbBzbEaAxAbByBxyEyaE
49 8 48 syl GFriendGraphaAxAbByBxyEyaE
50 49 adantr GFriendGraphaxaAxAbByBxyEyaE
51 50 impl GFriendGraphaxaAxAbByBxyEyaE
52 51 adantr GFriendGraphaxaAxAbByBbyxyEyaE
53 7 34 52 3jca GFriendGraphaxaAxAbByBbyaxbyabEbxExyEyaE
54 53 ex GFriendGraphaxaAxAbByBbyaxbyabEbxExyEyaE
55 54 reximdvva GFriendGraphaxaAxAbByBbybByBaxbyabEbxExyEyaE
56 55 exp31 GFriendGraphaxaAxAbByBbybByBaxbyabEbxExyEyaE
57 56 com24 GFriendGraphbByBbyaAxAaxbByBaxbyabEbxExyEyaE
58 57 imp31 GFriendGraphbByBbyaAxAaxbByBaxbyabEbxExyEyaE
59 58 reximdvva GFriendGraphbByBbyaAxAaxaAxAbByBaxbyabEbxExyEyaE
60 59 ex GFriendGraphbByBbyaAxAaxaAxAbByBaxbyabEbxExyEyaE
61 60 com13 aAxAaxbByBbyGFriendGraphaAxAbByBaxbyabEbxExyEyaE
62 61 imp aAxAaxbByBbyGFriendGraphaAxAbByBaxbyabEbxExyEyaE
63 1 2 3 4 frgrwopreglem1 AVBV
64 hashgt12el AV1<AaAxAax
65 64 ex AV1<AaAxAax
66 hashgt12el BV1<BbByBby
67 66 ex BV1<BbByBby
68 65 67 im2anan9 AVBV1<A1<BaAxAaxbByBby
69 63 68 ax-mp 1<A1<BaAxAaxbByBby
70 62 69 syl11 GFriendGraph1<A1<BaAxAbByBaxbyabEbxExyEyaE
71 70 3impib GFriendGraph1<A1<BaAxAbByBaxbyabEbxExyEyaE