Metamath Proof Explorer


Theorem frlmlmod

Description: The free module is a module. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Hypothesis frlmval.f F=RfreeLModI
Assertion frlmlmod RRingIWFLMod

Proof

Step Hyp Ref Expression
1 frlmval.f F=RfreeLModI
2 1 frlmval RRingIWF=RmI×ringLModR
3 simpr RRingIWIW
4 simpl RRingIWRRing
5 rlmlmod RRingringLModRLMod
6 5 adantr RRingIWringLModRLMod
7 fconst6g ringLModRLModI×ringLModR:ILMod
8 6 7 syl RRingIWI×ringLModR:ILMod
9 fvex ringLModRV
10 9 fvconst2 iII×ringLModRi=ringLModR
11 10 adantl RRingIWiII×ringLModRi=ringLModR
12 11 fveq2d RRingIWiIScalarI×ringLModRi=ScalarringLModR
13 rlmsca RRingR=ScalarringLModR
14 13 ad2antrr RRingIWiIR=ScalarringLModR
15 12 14 eqtr4d RRingIWiIScalarI×ringLModRi=R
16 eqid RmI×ringLModR=RmI×ringLModR
17 3 4 8 15 16 dsmmlmod RRingIWRmI×ringLModRLMod
18 2 17 eqeltrd RRingIWFLMod