Metamath Proof Explorer


Theorem frlmvscafval

Description: Scalar multiplication in a free module. (Contributed by Stefan O'Rear, 1-Feb-2015) (Revised by Stefan O'Rear, 6-May-2015)

Ref Expression
Hypotheses frlmvscafval.y Y=RfreeLModI
frlmvscafval.b B=BaseY
frlmvscafval.k K=BaseR
frlmvscafval.i φIW
frlmvscafval.a φAK
frlmvscafval.x φXB
frlmvscafval.v ˙=Y
frlmvscafval.t ·˙=R
Assertion frlmvscafval φA˙X=I×A·˙fX

Proof

Step Hyp Ref Expression
1 frlmvscafval.y Y=RfreeLModI
2 frlmvscafval.b B=BaseY
3 frlmvscafval.k K=BaseR
4 frlmvscafval.i φIW
5 frlmvscafval.a φAK
6 frlmvscafval.x φXB
7 frlmvscafval.v ˙=Y
8 frlmvscafval.t ·˙=R
9 1 2 frlmrcl XBRV
10 6 9 syl φRV
11 1 2 frlmpws RVIWY=ringLModR𝑠I𝑠B
12 10 4 11 syl2anc φY=ringLModR𝑠I𝑠B
13 12 fveq2d φY=ringLModR𝑠I𝑠B
14 2 fvexi BV
15 eqid ringLModR𝑠I𝑠B=ringLModR𝑠I𝑠B
16 eqid ringLModR𝑠I=ringLModR𝑠I
17 15 16 ressvsca BVringLModR𝑠I=ringLModR𝑠I𝑠B
18 14 17 ax-mp ringLModR𝑠I=ringLModR𝑠I𝑠B
19 13 7 18 3eqtr4g φ˙=ringLModR𝑠I
20 19 oveqd φA˙X=AringLModR𝑠IX
21 eqid ringLModR𝑠I=ringLModR𝑠I
22 eqid BaseringLModR𝑠I=BaseringLModR𝑠I
23 rlmvsca R=ringLModR
24 8 23 eqtri ·˙=ringLModR
25 eqid ScalarringLModR=ScalarringLModR
26 eqid BaseScalarringLModR=BaseScalarringLModR
27 fvexd φringLModRV
28 rlmsca RVR=ScalarringLModR
29 10 28 syl φR=ScalarringLModR
30 29 fveq2d φBaseR=BaseScalarringLModR
31 3 30 eqtrid φK=BaseScalarringLModR
32 5 31 eleqtrd φABaseScalarringLModR
33 12 fveq2d φBaseY=BaseringLModR𝑠I𝑠B
34 2 33 eqtrid φB=BaseringLModR𝑠I𝑠B
35 15 22 ressbasss BaseringLModR𝑠I𝑠BBaseringLModR𝑠I
36 34 35 eqsstrdi φBBaseringLModR𝑠I
37 36 6 sseldd φXBaseringLModR𝑠I
38 21 22 24 16 25 26 27 4 32 37 pwsvscafval φAringLModR𝑠IX=I×A·˙fX
39 20 38 eqtrd φA˙X=I×A·˙fX