Metamath Proof Explorer


Theorem frlmvscaval

Description: Coordinates of a scalar multiple with respect to a basis in a free module. (Contributed by Stefan O'Rear, 3-Feb-2015)

Ref Expression
Hypotheses frlmvscaval.y Y=RfreeLModI
frlmvscaval.b B=BaseY
frlmvscaval.k K=BaseR
frlmvscaval.i φIW
frlmvscaval.a φAK
frlmvscaval.x φXB
frlmvscaval.j φJI
frlmvscaval.v ˙=Y
frlmvscaval.t ·˙=R
Assertion frlmvscaval φA˙XJ=A·˙XJ

Proof

Step Hyp Ref Expression
1 frlmvscaval.y Y=RfreeLModI
2 frlmvscaval.b B=BaseY
3 frlmvscaval.k K=BaseR
4 frlmvscaval.i φIW
5 frlmvscaval.a φAK
6 frlmvscaval.x φXB
7 frlmvscaval.j φJI
8 frlmvscaval.v ˙=Y
9 frlmvscaval.t ·˙=R
10 1 2 3 4 5 6 8 9 frlmvscafval φA˙X=I×A·˙fX
11 10 fveq1d φA˙XJ=I×A·˙fXJ
12 fnconstg AKI×AFnI
13 5 12 syl φI×AFnI
14 1 3 2 frlmbasf IWXBX:IK
15 4 6 14 syl2anc φX:IK
16 15 ffnd φXFnI
17 fnfvof I×AFnIXFnIIWJII×A·˙fXJ=I×AJ·˙XJ
18 13 16 4 7 17 syl22anc φI×A·˙fXJ=I×AJ·˙XJ
19 fvconst2g AKJII×AJ=A
20 5 7 19 syl2anc φI×AJ=A
21 20 oveq1d φI×AJ·˙XJ=A·˙XJ
22 11 18 21 3eqtrd φA˙XJ=A·˙XJ