Metamath Proof Explorer


Theorem frrlem8

Description: Lemma for founded recursion. dom F is closed under predecessor classes. (Contributed by Scott Fenton, 6-Dec-2022)

Ref Expression
Hypotheses frrlem5.1 B = f | x f Fn x x A y x Pred R A y x y x f y = y G f Pred R A y
frrlem5.2 F = frecs R A G
Assertion frrlem8 z dom F Pred R A z dom F

Proof

Step Hyp Ref Expression
1 frrlem5.1 B = f | x f Fn x x A y x Pred R A y x y x f y = y G f Pred R A y
2 frrlem5.2 F = frecs R A G
3 vex z V
4 3 eldm2 z dom F w z w F
5 1 2 frrlem5 F = B
6 1 frrlem1 B = g | a g Fn a a A z a Pred R A z a z a g z = z G g Pred R A z
7 6 unieqi B = g | a g Fn a a A z a Pred R A z a z a g z = z G g Pred R A z
8 5 7 eqtri F = g | a g Fn a a A z a Pred R A z a z a g z = z G g Pred R A z
9 8 eleq2i z w F z w g | a g Fn a a A z a Pred R A z a z a g z = z G g Pred R A z
10 eluniab z w g | a g Fn a a A z a Pred R A z a z a g z = z G g Pred R A z g z w g a g Fn a a A z a Pred R A z a z a g z = z G g Pred R A z
11 9 10 bitri z w F g z w g a g Fn a a A z a Pred R A z a z a g z = z G g Pred R A z
12 simpr2r z w g g Fn a a A z a Pred R A z a z a g z = z G g Pred R A z z a Pred R A z a
13 vex w V
14 3 13 opeldm z w g z dom g
15 14 adantr z w g g Fn a a A z a Pred R A z a z a g z = z G g Pred R A z z dom g
16 simpr1 z w g g Fn a a A z a Pred R A z a z a g z = z G g Pred R A z g Fn a
17 16 fndmd z w g g Fn a a A z a Pred R A z a z a g z = z G g Pred R A z dom g = a
18 15 17 eleqtrd z w g g Fn a a A z a Pred R A z a z a g z = z G g Pred R A z z a
19 rsp z a Pred R A z a z a Pred R A z a
20 12 18 19 sylc z w g g Fn a a A z a Pred R A z a z a g z = z G g Pred R A z Pred R A z a
21 20 17 sseqtrrd z w g g Fn a a A z a Pred R A z a z a g z = z G g Pred R A z Pred R A z dom g
22 19.8a g Fn a a A z a Pred R A z a z a g z = z G g Pred R A z a g Fn a a A z a Pred R A z a z a g z = z G g Pred R A z
23 6 abeq2i g B a g Fn a a A z a Pred R A z a z a g z = z G g Pred R A z
24 22 23 sylibr g Fn a a A z a Pred R A z a z a g z = z G g Pred R A z g B
25 24 adantl z w g g Fn a a A z a Pred R A z a z a g z = z G g Pred R A z g B
26 elssuni g B g B
27 25 26 syl z w g g Fn a a A z a Pred R A z a z a g z = z G g Pred R A z g B
28 27 5 sseqtrrdi z w g g Fn a a A z a Pred R A z a z a g z = z G g Pred R A z g F
29 dmss g F dom g dom F
30 28 29 syl z w g g Fn a a A z a Pred R A z a z a g z = z G g Pred R A z dom g dom F
31 21 30 sstrd z w g g Fn a a A z a Pred R A z a z a g z = z G g Pred R A z Pred R A z dom F
32 31 expcom g Fn a a A z a Pred R A z a z a g z = z G g Pred R A z z w g Pred R A z dom F
33 32 exlimiv a g Fn a a A z a Pred R A z a z a g z = z G g Pred R A z z w g Pred R A z dom F
34 33 impcom z w g a g Fn a a A z a Pred R A z a z a g z = z G g Pred R A z Pred R A z dom F
35 34 exlimiv g z w g a g Fn a a A z a Pred R A z a z a g z = z G g Pred R A z Pred R A z dom F
36 11 35 sylbi z w F Pred R A z dom F
37 36 exlimiv w z w F Pred R A z dom F
38 4 37 sylbi z dom F Pred R A z dom F