Description: The class of all functions from a (proper) singleton into B is the union of all the singletons of (proper) ordered pairs over the elements of B as second component. (Contributed by AV, 13-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | fsetsniunop | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsn2g | |
|
2 | simpl | |
|
3 | opeq2 | |
|
4 | 3 | sneqd | |
5 | 4 | eqeq2d | |
6 | 5 | adantl | |
7 | simpr | |
|
8 | 2 6 7 | rspcedvd | |
9 | 1 8 | syl6bi | |
10 | simpl | |
|
11 | simpr | |
|
12 | 10 11 | fsnd | |
13 | 12 | adantr | |
14 | simpr | |
|
15 | 14 | feq1d | |
16 | 13 15 | mpbird | |
17 | 16 | ex | |
18 | 17 | rexlimdva | |
19 | 9 18 | impbid | |
20 | velsn | |
|
21 | 20 | bicomi | |
22 | 21 | rexbii | |
23 | 19 22 | bitrdi | |
24 | vex | |
|
25 | feq1 | |
|
26 | 24 25 | elab | |
27 | eliun | |
|
28 | 23 26 27 | 3bitr4g | |
29 | 28 | eqrdv | |