Metamath Proof Explorer


Theorem fsetsniunop

Description: The class of all functions from a (proper) singleton into B is the union of all the singletons of (proper) ordered pairs over the elements of B as second component. (Contributed by AV, 13-Sep-2024)

Ref Expression
Assertion fsetsniunop SVf|f:SB=bBSb

Proof

Step Hyp Ref Expression
1 fsn2g SVg:SBgSBg=SgS
2 simpl gSBg=SgSgSB
3 opeq2 b=gSSb=SgS
4 3 sneqd b=gSSb=SgS
5 4 eqeq2d b=gSg=Sbg=SgS
6 5 adantl gSBg=SgSb=gSg=Sbg=SgS
7 simpr gSBg=SgSg=SgS
8 2 6 7 rspcedvd gSBg=SgSbBg=Sb
9 1 8 syl6bi SVg:SBbBg=Sb
10 simpl SVbBSV
11 simpr SVbBbB
12 10 11 fsnd SVbBSb:SB
13 12 adantr SVbBg=SbSb:SB
14 simpr SVbBg=Sbg=Sb
15 14 feq1d SVbBg=Sbg:SBSb:SB
16 13 15 mpbird SVbBg=Sbg:SB
17 16 ex SVbBg=Sbg:SB
18 17 rexlimdva SVbBg=Sbg:SB
19 9 18 impbid SVg:SBbBg=Sb
20 velsn gSbg=Sb
21 20 bicomi g=SbgSb
22 21 rexbii bBg=SbbBgSb
23 19 22 bitrdi SVg:SBbBgSb
24 vex gV
25 feq1 f=gf:SBg:SB
26 24 25 elab gf|f:SBg:SB
27 eliun gbBSbbBgSb
28 23 26 27 3bitr4g SVgf|f:SBgbBSb
29 28 eqrdv SVf|f:SB=bBSb