Metamath Proof Explorer


Theorem fsumser

Description: A finite sum expressed in terms of a partial sum of an infinite series. The recursive definition follows as fsum1 and fsump1i , which should make our notation clear and from which, along with closure fsumcl , we will derive the basic properties of finite sums. (Contributed by NM, 11-Dec-2005) (Revised by Mario Carneiro, 21-Apr-2014)

Ref Expression
Hypotheses fsumser.1 φkMNFk=A
fsumser.2 φNM
fsumser.3 φkMNA
Assertion fsumser φk=MNA=seqM+FN

Proof

Step Hyp Ref Expression
1 fsumser.1 φkMNFk=A
2 fsumser.2 φNM
3 fsumser.3 φkMNA
4 eleq1w m=kmMNkMN
5 fveq2 m=kFm=Fk
6 4 5 ifbieq1d m=kifmMNFm0=ifkMNFk0
7 eqid mMifmMNFm0=mMifmMNFm0
8 fvex FkV
9 c0ex 0V
10 8 9 ifex ifkMNFk0V
11 6 7 10 fvmpt kMmMifmMNFm0k=ifkMNFk0
12 1 ifeq1da φifkMNFk0=ifkMNA0
13 11 12 sylan9eqr φkMmMifmMNFm0k=ifkMNA0
14 ssidd φMNMN
15 13 2 3 14 fsumsers φk=MNA=seqM+mMifmMNFm0N
16 elfzuz kMNkM
17 16 11 syl kMNmMifmMNFm0k=ifkMNFk0
18 iftrue kMNifkMNFk0=Fk
19 17 18 eqtrd kMNmMifmMNFm0k=Fk
20 19 adantl φkMNmMifmMNFm0k=Fk
21 2 20 seqfveq φseqM+mMifmMNFm0N=seqM+FN
22 15 21 eqtrd φk=MNA=seqM+FN