| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0nn0 |
|
| 2 |
1
|
a1i |
|
| 3 |
|
oveq2 |
|
| 4 |
3
|
sseq2d |
|
| 5 |
4
|
ralbidv |
|
| 6 |
5
|
adantl |
|
| 7 |
|
ral0 |
|
| 8 |
|
raleq |
|
| 9 |
7 8
|
mpbii |
|
| 10 |
|
0ss |
|
| 11 |
|
sseq1 |
|
| 12 |
10 11
|
mpbiri |
|
| 13 |
12
|
ralimi |
|
| 14 |
9 13
|
jaoi |
|
| 15 |
2 6 14
|
rspcedvd |
|
| 16 |
15
|
2a1d |
|
| 17 |
|
simplr |
|
| 18 |
|
simpr |
|
| 19 |
|
ioran |
|
| 20 |
|
oveq1 |
|
| 21 |
20
|
eqeq1d |
|
| 22 |
21
|
cbvralvw |
|
| 23 |
22
|
notbii |
|
| 24 |
23
|
anbi2i |
|
| 25 |
19 24
|
bitri |
|
| 26 |
|
rexnal |
|
| 27 |
|
df-ne |
|
| 28 |
27
|
bicomi |
|
| 29 |
28
|
rexbii |
|
| 30 |
26 29
|
sylbb1 |
|
| 31 |
25 30
|
simplbiim |
|
| 32 |
31
|
ad2antrr |
|
| 33 |
|
iunn0 |
|
| 34 |
32 33
|
sylib |
|
| 35 |
18 34
|
jca |
|
| 36 |
|
oveq1 |
|
| 37 |
36
|
cbviunv |
|
| 38 |
|
eqid |
|
| 39 |
37 38
|
fsuppmapnn0fiublem |
|
| 40 |
17 35 39
|
sylc |
|
| 41 |
|
nfv |
|
| 42 |
|
nfra1 |
|
| 43 |
41 42
|
nfor |
|
| 44 |
43
|
nfn |
|
| 45 |
|
nfv |
|
| 46 |
44 45
|
nfan |
|
| 47 |
|
nfra1 |
|
| 48 |
46 47
|
nfan |
|
| 49 |
|
nfv |
|
| 50 |
48 49
|
nfan |
|
| 51 |
|
oveq2 |
|
| 52 |
51
|
sseq2d |
|
| 53 |
52
|
adantl |
|
| 54 |
50 53
|
ralbid |
|
| 55 |
|
rexnal |
|
| 56 |
|
df-ne |
|
| 57 |
56
|
bicomi |
|
| 58 |
57
|
rexbii |
|
| 59 |
55 58
|
sylbb1 |
|
| 60 |
19 59
|
simplbiim |
|
| 61 |
60
|
ad2antrr |
|
| 62 |
|
iunn0 |
|
| 63 |
20
|
cbviunv |
|
| 64 |
63
|
neeq1i |
|
| 65 |
62 64
|
bitri |
|
| 66 |
61 65
|
sylib |
|
| 67 |
18 66
|
jca |
|
| 68 |
37 38
|
fsuppmapnn0fiub |
|
| 69 |
17 67 68
|
sylc |
|
| 70 |
40 54 69
|
rspcedvd |
|
| 71 |
70
|
exp31 |
|
| 72 |
16 71
|
pm2.61i |
|