| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsuppunbi.u |
|
| 2 |
|
relfsupp |
|
| 3 |
2
|
brrelex12i |
|
| 4 |
|
unexb |
|
| 5 |
|
simpr |
|
| 6 |
5
|
adantr |
|
| 7 |
|
simprlr |
|
| 8 |
7
|
suppun |
|
| 9 |
6 8
|
ssfid |
|
| 10 |
|
fununfun |
|
| 11 |
10
|
simpld |
|
| 12 |
11
|
adantr |
|
| 13 |
12
|
adantr |
|
| 14 |
|
simprll |
|
| 15 |
|
simpr |
|
| 16 |
15
|
adantl |
|
| 17 |
|
funisfsupp |
|
| 18 |
13 14 16 17
|
syl3anc |
|
| 19 |
9 18
|
mpbird |
|
| 20 |
|
uncom |
|
| 21 |
20
|
oveq1i |
|
| 22 |
21
|
eleq1i |
|
| 23 |
22
|
biimpi |
|
| 24 |
23
|
adantl |
|
| 25 |
24
|
adantr |
|
| 26 |
14
|
suppun |
|
| 27 |
25 26
|
ssfid |
|
| 28 |
10
|
simprd |
|
| 29 |
28
|
adantr |
|
| 30 |
29
|
adantr |
|
| 31 |
|
funisfsupp |
|
| 32 |
30 7 16 31
|
syl3anc |
|
| 33 |
27 32
|
mpbird |
|
| 34 |
19 33
|
jca |
|
| 35 |
34
|
a1d |
|
| 36 |
35
|
ex |
|
| 37 |
|
fsuppimp |
|
| 38 |
36 37
|
syl11 |
|
| 39 |
4 38
|
sylanbr |
|
| 40 |
3 39
|
mpcom |
|
| 41 |
40
|
com12 |
|
| 42 |
|
simpl |
|
| 43 |
|
simpr |
|
| 44 |
42 43
|
fsuppun |
|
| 45 |
44
|
adantl |
|
| 46 |
1
|
adantr |
|
| 47 |
2
|
brrelex1i |
|
| 48 |
2
|
brrelex1i |
|
| 49 |
|
unexg |
|
| 50 |
47 48 49
|
syl2an |
|
| 51 |
50
|
adantl |
|
| 52 |
2
|
brrelex2i |
|
| 53 |
52
|
adantr |
|
| 54 |
53
|
adantl |
|
| 55 |
|
funisfsupp |
|
| 56 |
46 51 54 55
|
syl3anc |
|
| 57 |
45 56
|
mpbird |
|
| 58 |
57
|
ex |
|
| 59 |
41 58
|
impbid |
|