Metamath Proof Explorer


Theorem fthoppc

Description: The opposite functor of a faithful functor is also faithful. Proposition 3.43(c) in Adamek p. 39. (Contributed by Mario Carneiro, 27-Jan-2017)

Ref Expression
Hypotheses fulloppc.o O = oppCat C
fulloppc.p P = oppCat D
fthoppc.f φ F C Faith D G
Assertion fthoppc φ F O Faith P tpos G

Proof

Step Hyp Ref Expression
1 fulloppc.o O = oppCat C
2 fulloppc.p P = oppCat D
3 fthoppc.f φ F C Faith D G
4 fthfunc C Faith D C Func D
5 4 ssbri F C Faith D G F C Func D G
6 3 5 syl φ F C Func D G
7 1 2 6 funcoppc φ F O Func P tpos G
8 eqid Base C = Base C
9 eqid Hom C = Hom C
10 eqid Hom D = Hom D
11 3 adantr φ x Base C y Base C F C Faith D G
12 simprr φ x Base C y Base C y Base C
13 simprl φ x Base C y Base C x Base C
14 8 9 10 11 12 13 fthf1 φ x Base C y Base C y G x : y Hom C x 1-1 F y Hom D F x
15 df-f1 y G x : y Hom C x 1-1 F y Hom D F x y G x : y Hom C x F y Hom D F x Fun y G x -1
16 15 simprbi y G x : y Hom C x 1-1 F y Hom D F x Fun y G x -1
17 14 16 syl φ x Base C y Base C Fun y G x -1
18 ovtpos x tpos G y = y G x
19 18 cnveqi x tpos G y -1 = y G x -1
20 19 funeqi Fun x tpos G y -1 Fun y G x -1
21 17 20 sylibr φ x Base C y Base C Fun x tpos G y -1
22 21 ralrimivva φ x Base C y Base C Fun x tpos G y -1
23 1 8 oppcbas Base C = Base O
24 23 isfth F O Faith P tpos G F O Func P tpos G x Base C y Base C Fun x tpos G y -1
25 7 22 24 sylanbrc φ F O Faith P tpos G