Metamath Proof Explorer


Theorem fthoppc

Description: The opposite functor of a faithful functor is also faithful. Proposition 3.43(c) in Adamek p. 39. (Contributed by Mario Carneiro, 27-Jan-2017)

Ref Expression
Hypotheses fulloppc.o O=oppCatC
fulloppc.p P=oppCatD
fthoppc.f φFCFaithDG
Assertion fthoppc φFOFaithPtposG

Proof

Step Hyp Ref Expression
1 fulloppc.o O=oppCatC
2 fulloppc.p P=oppCatD
3 fthoppc.f φFCFaithDG
4 fthfunc CFaithDCFuncD
5 4 ssbri FCFaithDGFCFuncDG
6 3 5 syl φFCFuncDG
7 1 2 6 funcoppc φFOFuncPtposG
8 eqid BaseC=BaseC
9 eqid HomC=HomC
10 eqid HomD=HomD
11 3 adantr φxBaseCyBaseCFCFaithDG
12 simprr φxBaseCyBaseCyBaseC
13 simprl φxBaseCyBaseCxBaseC
14 8 9 10 11 12 13 fthf1 φxBaseCyBaseCyGx:yHomCx1-1FyHomDFx
15 df-f1 yGx:yHomCx1-1FyHomDFxyGx:yHomCxFyHomDFxFunyGx-1
16 15 simprbi yGx:yHomCx1-1FyHomDFxFunyGx-1
17 14 16 syl φxBaseCyBaseCFunyGx-1
18 ovtpos xtposGy=yGx
19 18 cnveqi xtposGy-1=yGx-1
20 19 funeqi FunxtposGy-1FunyGx-1
21 17 20 sylibr φxBaseCyBaseCFunxtposGy-1
22 21 ralrimivva φxBaseCyBaseCFunxtposGy-1
23 1 8 oppcbas BaseC=BaseO
24 23 isfth FOFaithPtposGFOFuncPtposGxBaseCyBaseCFunxtposGy-1
25 7 22 24 sylanbrc φFOFaithPtposG