Description: The opposite functor of a faithful functor is also faithful. Proposition 3.43(c) in Adamek p. 39. (Contributed by Mario Carneiro, 27-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fulloppc.o | |
|
fulloppc.p | |
||
fthoppc.f | |
||
Assertion | fthoppc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fulloppc.o | |
|
2 | fulloppc.p | |
|
3 | fthoppc.f | |
|
4 | fthfunc | |
|
5 | 4 | ssbri | |
6 | 3 5 | syl | |
7 | 1 2 6 | funcoppc | |
8 | eqid | |
|
9 | eqid | |
|
10 | eqid | |
|
11 | 3 | adantr | |
12 | simprr | |
|
13 | simprl | |
|
14 | 8 9 10 11 12 13 | fthf1 | |
15 | df-f1 | |
|
16 | 15 | simprbi | |
17 | 14 16 | syl | |
18 | ovtpos | |
|
19 | 18 | cnveqi | |
20 | 19 | funeqi | |
21 | 17 20 | sylibr | |
22 | 21 | ralrimivva | |
23 | 1 8 | oppcbas | |
24 | 23 | isfth | |
25 | 7 22 24 | sylanbrc | |