Metamath Proof Explorer


Theorem fucofulem2

Description: Lemma for proving functor theorems. Maybe consider eufnfv to prove the uniqueness of a functor. (Contributed by Zhi Wang, 25-Sep-2025)

Ref Expression
Hypotheses fucofulem2.b B = D Func E × C Func D
fucofulem2.h H = Hom D FuncCat E × c C FuncCat D
Assertion fucofulem2 G z B × B F 1 st z C Nat E F 2 nd z H z G = u B , v B u G v m B n B m G n = b 1 st m D Nat E 1 st n , a 2 nd m C Nat D 2 nd n b m G n a p 1 st m D Nat E 1 st n q 2 nd m C Nat D 2 nd n p m G n q F m C Nat E F n

Proof

Step Hyp Ref Expression
1 fucofulem2.b B = D Func E × C Func D
2 fucofulem2.h H = Hom D FuncCat E × c C FuncCat D
3 eqid D FuncCat E × c C FuncCat D = D FuncCat E × c C FuncCat D
4 3 xpcfucbas D Func E × C Func D = Base D FuncCat E × c C FuncCat D
5 1 4 eqtri B = Base D FuncCat E × c C FuncCat D
6 5 funcf2lem2 G z B × B F 1 st z C Nat E F 2 nd z H z G Fn B × B m B n B m G n : m H n F m C Nat E F n
7 fnov G Fn B × B G = u B , v B u G v
8 ffnfv m G n : m H n F m C Nat E F n m G n Fn m H n r m H n m G n r F m C Nat E F n
9 simpl m B n B m B
10 simpr m B n B n B
11 3 5 2 9 10 xpcfuchom m B n B m H n = 1 st m D Nat E 1 st n × 2 nd m C Nat D 2 nd n
12 11 fneq2d m B n B m G n Fn m H n m G n Fn 1 st m D Nat E 1 st n × 2 nd m C Nat D 2 nd n
13 fnov m G n Fn 1 st m D Nat E 1 st n × 2 nd m C Nat D 2 nd n m G n = b 1 st m D Nat E 1 st n , a 2 nd m C Nat D 2 nd n b m G n a
14 12 13 bitrdi m B n B m G n Fn m H n m G n = b 1 st m D Nat E 1 st n , a 2 nd m C Nat D 2 nd n b m G n a
15 11 raleqdv m B n B r m H n m G n r F m C Nat E F n r 1 st m D Nat E 1 st n × 2 nd m C Nat D 2 nd n m G n r F m C Nat E F n
16 fveq2 r = p q m G n r = m G n p q
17 df-ov p m G n q = m G n p q
18 16 17 eqtr4di r = p q m G n r = p m G n q
19 18 eleq1d r = p q m G n r F m C Nat E F n p m G n q F m C Nat E F n
20 19 ralxp r 1 st m D Nat E 1 st n × 2 nd m C Nat D 2 nd n m G n r F m C Nat E F n p 1 st m D Nat E 1 st n q 2 nd m C Nat D 2 nd n p m G n q F m C Nat E F n
21 15 20 bitrdi m B n B r m H n m G n r F m C Nat E F n p 1 st m D Nat E 1 st n q 2 nd m C Nat D 2 nd n p m G n q F m C Nat E F n
22 14 21 anbi12d m B n B m G n Fn m H n r m H n m G n r F m C Nat E F n m G n = b 1 st m D Nat E 1 st n , a 2 nd m C Nat D 2 nd n b m G n a p 1 st m D Nat E 1 st n q 2 nd m C Nat D 2 nd n p m G n q F m C Nat E F n
23 8 22 bitrid m B n B m G n : m H n F m C Nat E F n m G n = b 1 st m D Nat E 1 st n , a 2 nd m C Nat D 2 nd n b m G n a p 1 st m D Nat E 1 st n q 2 nd m C Nat D 2 nd n p m G n q F m C Nat E F n
24 23 adantl m B n B m G n : m H n F m C Nat E F n m G n = b 1 st m D Nat E 1 st n , a 2 nd m C Nat D 2 nd n b m G n a p 1 st m D Nat E 1 st n q 2 nd m C Nat D 2 nd n p m G n q F m C Nat E F n
25 24 2ralbidva m B n B m G n : m H n F m C Nat E F n m B n B m G n = b 1 st m D Nat E 1 st n , a 2 nd m C Nat D 2 nd n b m G n a p 1 st m D Nat E 1 st n q 2 nd m C Nat D 2 nd n p m G n q F m C Nat E F n
26 25 mptru m B n B m G n : m H n F m C Nat E F n m B n B m G n = b 1 st m D Nat E 1 st n , a 2 nd m C Nat D 2 nd n b m G n a p 1 st m D Nat E 1 st n q 2 nd m C Nat D 2 nd n p m G n q F m C Nat E F n
27 7 26 anbi12i G Fn B × B m B n B m G n : m H n F m C Nat E F n G = u B , v B u G v m B n B m G n = b 1 st m D Nat E 1 st n , a 2 nd m C Nat D 2 nd n b m G n a p 1 st m D Nat E 1 st n q 2 nd m C Nat D 2 nd n p m G n q F m C Nat E F n
28 6 27 bitri G z B × B F 1 st z C Nat E F 2 nd z H z G = u B , v B u G v m B n B m G n = b 1 st m D Nat E 1 st n , a 2 nd m C Nat D 2 nd n b m G n a p 1 st m D Nat E 1 st n q 2 nd m C Nat D 2 nd n p m G n q F m C Nat E F n