Metamath Proof Explorer


Theorem funcf2lem

Description: A utility theorem for proving equivalence of "is a functor". (Contributed by Zhi Wang, 1-Oct-2024)

Ref Expression
Assertion funcf2lem GzB×BF1stzJF2ndzHzGVGFnB×BxByBxGy:xHyFxJFy

Proof

Step Hyp Ref Expression
1 elixp2 GzB×BF1stzJF2ndzHzGVGFnB×BzB×BGzF1stzJF2ndzHz
2 fveq2 z=xyGz=Gxy
3 df-ov xGy=Gxy
4 2 3 eqtr4di z=xyGz=xGy
5 vex xV
6 vex yV
7 5 6 op1std z=xy1stz=x
8 7 fveq2d z=xyF1stz=Fx
9 5 6 op2ndd z=xy2ndz=y
10 9 fveq2d z=xyF2ndz=Fy
11 8 10 oveq12d z=xyF1stzJF2ndz=FxJFy
12 fveq2 z=xyHz=Hxy
13 df-ov xHy=Hxy
14 12 13 eqtr4di z=xyHz=xHy
15 11 14 oveq12d z=xyF1stzJF2ndzHz=FxJFyxHy
16 4 15 eleq12d z=xyGzF1stzJF2ndzHzxGyFxJFyxHy
17 ovex FxJFyV
18 ovex xHyV
19 17 18 elmap xGyFxJFyxHyxGy:xHyFxJFy
20 16 19 bitrdi z=xyGzF1stzJF2ndzHzxGy:xHyFxJFy
21 20 ralxp zB×BGzF1stzJF2ndzHzxByBxGy:xHyFxJFy
22 21 3anbi3i GVGFnB×BzB×BGzF1stzJF2ndzHzGVGFnB×BxByBxGy:xHyFxJFy
23 1 22 bitri GzB×BF1stzJF2ndzHzGVGFnB×BxByBxGy:xHyFxJFy