Description: A utility theorem for proving equivalence of "is a functor". (Contributed by Zhi Wang, 1-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | funcf2lem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elixp2 | |
|
2 | fveq2 | |
|
3 | df-ov | |
|
4 | 2 3 | eqtr4di | |
5 | vex | |
|
6 | vex | |
|
7 | 5 6 | op1std | |
8 | 7 | fveq2d | |
9 | 5 6 | op2ndd | |
10 | 9 | fveq2d | |
11 | 8 10 | oveq12d | |
12 | fveq2 | |
|
13 | df-ov | |
|
14 | 12 13 | eqtr4di | |
15 | 11 14 | oveq12d | |
16 | 4 15 | eleq12d | |
17 | ovex | |
|
18 | ovex | |
|
19 | 17 18 | elmap | |
20 | 16 19 | bitrdi | |
21 | 20 | ralxp | |
22 | 21 | 3anbi3i | |
23 | 1 22 | bitri | |