Description: The converse quadruple of ordered pairs is a function if the second members are pairwise different. Note that the second members need not be sets. (Contributed by AV, 23-Jan-2021) (Proof shortened by JJ, 14-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | funcnvqp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcnvpr | |
|
2 | 1 | 3expa | |
3 | 2 | 3ad2antr1 | |
4 | 3 | ad2ant2r | |
5 | 4 | 3adantr2 | |
6 | funcnvpr | |
|
7 | 6 | 3expa | |
8 | 7 | ad2ant2l | |
9 | 8 | 3adantr2 | |
10 | df-rn | |
|
11 | rnpropg | |
|
12 | 10 11 | eqtr3id | |
13 | df-rn | |
|
14 | rnpropg | |
|
15 | 13 14 | eqtr3id | |
16 | 12 15 | ineqan12d | |
17 | disjpr2 | |
|
18 | 17 | an4s | |
19 | 18 | 3adantl1 | |
20 | 19 | 3adant3 | |
21 | 16 20 | sylan9eq | |
22 | funun | |
|
23 | 5 9 21 22 | syl21anc | |
24 | cnvun | |
|
25 | 24 | funeqi | |
26 | 23 25 | sylibr | |