Metamath Proof Explorer


Theorem funcnvqp

Description: The converse quadruple of ordered pairs is a function if the second members are pairwise different. Note that the second members need not be sets. (Contributed by AV, 23-Jan-2021) (Proof shortened by JJ, 14-Jul-2021)

Ref Expression
Assertion funcnvqp AUCVEWGTBDBFBHDFDHFHFunABCDEFGH-1

Proof

Step Hyp Ref Expression
1 funcnvpr AUCVBDFunABCD-1
2 1 3expa AUCVBDFunABCD-1
3 2 3ad2antr1 AUCVBDBFBHFunABCD-1
4 3 ad2ant2r AUCVEWGTBDBFBHFHFunABCD-1
5 4 3adantr2 AUCVEWGTBDBFBHDFDHFHFunABCD-1
6 funcnvpr EWGTFHFunEFGH-1
7 6 3expa EWGTFHFunEFGH-1
8 7 ad2ant2l AUCVEWGTBDBFBHFHFunEFGH-1
9 8 3adantr2 AUCVEWGTBDBFBHDFDHFHFunEFGH-1
10 df-rn ranABCD=domABCD-1
11 rnpropg AUCVranABCD=BD
12 10 11 eqtr3id AUCVdomABCD-1=BD
13 df-rn ranEFGH=domEFGH-1
14 rnpropg EWGTranEFGH=FH
15 13 14 eqtr3id EWGTdomEFGH-1=FH
16 12 15 ineqan12d AUCVEWGTdomABCD-1domEFGH-1=BDFH
17 disjpr2 BFDFBHDHBDFH=
18 17 an4s BFBHDFDHBDFH=
19 18 3adantl1 BDBFBHDFDHBDFH=
20 19 3adant3 BDBFBHDFDHFHBDFH=
21 16 20 sylan9eq AUCVEWGTBDBFBHDFDHFHdomABCD-1domEFGH-1=
22 funun FunABCD-1FunEFGH-1domABCD-1domEFGH-1=FunABCD-1EFGH-1
23 5 9 21 22 syl21anc AUCVEWGTBDBFBHDFDHFHFunABCD-1EFGH-1
24 cnvun ABCDEFGH-1=ABCD-1EFGH-1
25 24 funeqi FunABCDEFGH-1FunABCD-1EFGH-1
26 23 25 sylibr AUCVEWGTBDBFBHDFDHFHFunABCDEFGH-1