Metamath Proof Explorer


Theorem funcoressn

Description: A composition restricted to a singleton is a function under certain conditions. (Contributed by Alexander van der Vekens, 25-Jul-2017)

Ref Expression
Assertion funcoressn GXdomFFunFGXGFnAXAFunFGX

Proof

Step Hyp Ref Expression
1 dmressnsn GXdomFdomFGX=GX
2 df-fn FGXFnGXFunFGXdomFGX=GX
3 2 simplbi2com domFGX=GXFunFGXFGXFnGX
4 1 3 syl GXdomFFunFGXFGXFnGX
5 4 imp GXdomFFunFGXFGXFnGX
6 5 adantr GXdomFFunFGXGFnAXAFGXFnGX
7 fnsnfv GFnAXAGX=GX
8 7 adantl GXdomFFunFGXGFnAXAGX=GX
9 df-ima GX=ranGX
10 8 9 eqtrdi GXdomFFunFGXGFnAXAGX=ranGX
11 10 reseq2d GXdomFFunFGXGFnAXAFGX=FranGX
12 11 10 fneq12d GXdomFFunFGXGFnAXAFGXFnGXFranGXFnranGX
13 6 12 mpbid GXdomFFunFGXGFnAXAFranGXFnranGX
14 fnfun GFnAFunG
15 funres FunGFunGX
16 15 funfnd FunGGXFndomGX
17 14 16 syl GFnAGXFndomGX
18 17 adantr GFnAXAGXFndomGX
19 18 adantl GXdomFFunFGXGFnAXAGXFndomGX
20 fnresfnco FranGXFnranGXGXFndomGXFGXFndomGX
21 13 19 20 syl2anc GXdomFFunFGXGFnAXAFGXFndomGX
22 fnfun FGXFndomGXFunFGX
23 21 22 syl GXdomFFunFGXGFnAXAFunFGX
24 resco FGX=FGX
25 24 funeqi FunFGXFunFGX
26 23 25 sylibr GXdomFFunFGXGFnAXAFunFGX