Metamath Proof Explorer


Theorem funcringcsetclem7ALTV

Description: Lemma 7 for funcringcsetcALTV . (Contributed by AV, 15-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses funcringcsetcALTV.r R=RingCatALTVU
funcringcsetcALTV.s S=SetCatU
funcringcsetcALTV.b B=BaseR
funcringcsetcALTV.c C=BaseS
funcringcsetcALTV.u φUWUni
funcringcsetcALTV.f φF=xBBasex
funcringcsetcALTV.g φG=xB,yBIxRingHomy
Assertion funcringcsetclem7ALTV φXBXGXIdRX=IdSFX

Proof

Step Hyp Ref Expression
1 funcringcsetcALTV.r R=RingCatALTVU
2 funcringcsetcALTV.s S=SetCatU
3 funcringcsetcALTV.b B=BaseR
4 funcringcsetcALTV.c C=BaseS
5 funcringcsetcALTV.u φUWUni
6 funcringcsetcALTV.f φF=xBBasex
7 funcringcsetcALTV.g φG=xB,yBIxRingHomy
8 1 2 3 4 5 6 7 funcringcsetclem5ALTV φXBXBXGX=IXRingHomX
9 8 anabsan2 φXBXGX=IXRingHomX
10 eqid IdR=IdR
11 5 adantr φXBUWUni
12 simpr φXBXB
13 eqid BaseX=BaseX
14 1 3 10 11 12 13 ringcidALTV φXBIdRX=IBaseX
15 9 14 fveq12d φXBXGXIdRX=IXRingHomXIBaseX
16 1 3 5 ringcbasALTV φB=URing
17 16 eleq2d φXBXURing
18 elin XURingXUXRing
19 18 simprbi XURingXRing
20 17 19 syl6bi φXBXRing
21 20 imp φXBXRing
22 13 idrhm XRingIBaseXXRingHomX
23 fvresi IBaseXXRingHomXIXRingHomXIBaseX=IBaseX
24 21 22 23 3syl φXBIXRingHomXIBaseX=IBaseX
25 1 2 3 4 5 6 funcringcsetclem1ALTV φXBFX=BaseX
26 25 fveq2d φXBIdSFX=IdSBaseX
27 eqid IdS=IdS
28 1 3 5 ringcbasbasALTV φXBBaseXU
29 2 27 11 28 setcid φXBIdSBaseX=IBaseX
30 26 29 eqtr2d φXBIBaseX=IdSFX
31 15 24 30 3eqtrd φXBXGXIdRX=IdSFX