Metamath Proof Explorer


Theorem funssres

Description: The restriction of a function to the domain of a subclass equals the subclass. (Contributed by NM, 15-Aug-1994)

Ref Expression
Assertion funssres FunFGFFdomG=G

Proof

Step Hyp Ref Expression
1 vex yV
2 1 opelresi xyFdomGxdomGxyF
3 vex xV
4 3 1 opeldm xyGxdomG
5 4 a1i GFxyGxdomG
6 ssel GFxyGxyF
7 5 6 jcad GFxyGxdomGxyF
8 7 adantl FunFGFxyGxdomGxyF
9 funeu2 FunFxyF∃!yxyF
10 3 eldm2 xdomGyxyG
11 6 ancrd GFxyGxyFxyG
12 11 eximdv GFyxyGyxyFxyG
13 10 12 biimtrid GFxdomGyxyFxyG
14 13 imp GFxdomGyxyFxyG
15 eupick ∃!yxyFyxyFxyGxyFxyG
16 9 14 15 syl2an FunFxyFGFxdomGxyFxyG
17 16 exp43 FunFxyFGFxdomGxyFxyG
18 17 com23 FunFGFxyFxdomGxyFxyG
19 18 imp FunFGFxyFxdomGxyFxyG
20 19 com34 FunFGFxyFxyFxdomGxyG
21 20 pm2.43d FunFGFxyFxdomGxyG
22 21 impcomd FunFGFxdomGxyFxyG
23 8 22 impbid FunFGFxyGxdomGxyF
24 2 23 bitr4id FunFGFxyFdomGxyG
25 24 alrimivv FunFGFxyxyFdomGxyG
26 relres RelFdomG
27 funrel FunFRelF
28 relss GFRelFRelG
29 27 28 mpan9 FunFGFRelG
30 eqrel RelFdomGRelGFdomG=GxyxyFdomGxyG
31 26 29 30 sylancr FunFGFFdomG=GxyxyFdomGxyG
32 25 31 mpbird FunFGFFdomG=G