Metamath Proof Explorer


Theorem funsssuppss

Description: The support of a function which is a subset of another function is a subset of the support of this other function. (Contributed by AV, 27-Jul-2019)

Ref Expression
Assertion funsssuppss Fun G F G G V F supp Z G supp Z

Proof

Step Hyp Ref Expression
1 funss F G Fun G Fun F
2 1 impcom Fun G F G Fun F
3 2 funfnd Fun G F G F Fn dom F
4 funfn Fun G G Fn dom G
5 4 biimpi Fun G G Fn dom G
6 5 adantr Fun G F G G Fn dom G
7 3 6 jca Fun G F G F Fn dom F G Fn dom G
8 7 3adant3 Fun G F G G V F Fn dom F G Fn dom G
9 8 adantr Fun G F G G V Z V F Fn dom F G Fn dom G
10 dmss F G dom F dom G
11 10 3ad2ant2 Fun G F G G V dom F dom G
12 11 adantr Fun G F G G V Z V dom F dom G
13 dmexg G V dom G V
14 13 3ad2ant3 Fun G F G G V dom G V
15 14 adantr Fun G F G G V Z V dom G V
16 simpr Fun G F G G V Z V Z V
17 12 15 16 3jca Fun G F G G V Z V dom F dom G dom G V Z V
18 9 17 jca Fun G F G G V Z V F Fn dom F G Fn dom G dom F dom G dom G V Z V
19 funssfv Fun G F G x dom F G x = F x
20 19 3expa Fun G F G x dom F G x = F x
21 eqeq1 G x = F x G x = Z F x = Z
22 21 biimpd G x = F x G x = Z F x = Z
23 20 22 syl Fun G F G x dom F G x = Z F x = Z
24 23 ralrimiva Fun G F G x dom F G x = Z F x = Z
25 24 3adant3 Fun G F G G V x dom F G x = Z F x = Z
26 25 adantr Fun G F G G V Z V x dom F G x = Z F x = Z
27 suppfnss F Fn dom F G Fn dom G dom F dom G dom G V Z V x dom F G x = Z F x = Z F supp Z G supp Z
28 18 26 27 sylc Fun G F G G V Z V F supp Z G supp Z
29 28 expcom Z V Fun G F G G V F supp Z G supp Z
30 ssid
31 simpr F V Z V Z V
32 supp0prc ¬ F V Z V F supp Z =
33 31 32 nsyl5 ¬ Z V F supp Z =
34 simpr G V Z V Z V
35 supp0prc ¬ G V Z V G supp Z =
36 34 35 nsyl5 ¬ Z V G supp Z =
37 33 36 sseq12d ¬ Z V F supp Z G supp Z
38 30 37 mpbiri ¬ Z V F supp Z G supp Z
39 38 a1d ¬ Z V Fun G F G G V F supp Z G supp Z
40 29 39 pm2.61i Fun G F G G V F supp Z G supp Z