Metamath Proof Explorer


Theorem funsssuppss

Description: The support of a function which is a subset of another function is a subset of the support of this other function. (Contributed by AV, 27-Jul-2019)

Ref Expression
Assertion funsssuppss FunGFGGVFsuppZGsuppZ

Proof

Step Hyp Ref Expression
1 funss FGFunGFunF
2 1 impcom FunGFGFunF
3 2 funfnd FunGFGFFndomF
4 funfn FunGGFndomG
5 4 biimpi FunGGFndomG
6 5 adantr FunGFGGFndomG
7 3 6 jca FunGFGFFndomFGFndomG
8 7 3adant3 FunGFGGVFFndomFGFndomG
9 8 adantr FunGFGGVZVFFndomFGFndomG
10 dmss FGdomFdomG
11 10 3ad2ant2 FunGFGGVdomFdomG
12 11 adantr FunGFGGVZVdomFdomG
13 dmexg GVdomGV
14 13 3ad2ant3 FunGFGGVdomGV
15 14 adantr FunGFGGVZVdomGV
16 simpr FunGFGGVZVZV
17 12 15 16 3jca FunGFGGVZVdomFdomGdomGVZV
18 9 17 jca FunGFGGVZVFFndomFGFndomGdomFdomGdomGVZV
19 funssfv FunGFGxdomFGx=Fx
20 19 3expa FunGFGxdomFGx=Fx
21 eqeq1 Gx=FxGx=ZFx=Z
22 21 biimpd Gx=FxGx=ZFx=Z
23 20 22 syl FunGFGxdomFGx=ZFx=Z
24 23 ralrimiva FunGFGxdomFGx=ZFx=Z
25 24 3adant3 FunGFGGVxdomFGx=ZFx=Z
26 25 adantr FunGFGGVZVxdomFGx=ZFx=Z
27 suppfnss FFndomFGFndomGdomFdomGdomGVZVxdomFGx=ZFx=ZFsuppZGsuppZ
28 18 26 27 sylc FunGFGGVZVFsuppZGsuppZ
29 28 expcom ZVFunGFGGVFsuppZGsuppZ
30 ssid
31 simpr FVZVZV
32 supp0prc ¬FVZVFsuppZ=
33 31 32 nsyl5 ¬ZVFsuppZ=
34 simpr GVZVZV
35 supp0prc ¬GVZVGsuppZ=
36 34 35 nsyl5 ¬ZVGsuppZ=
37 33 36 sseq12d ¬ZVFsuppZGsuppZ
38 30 37 mpbiri ¬ZVFsuppZGsuppZ
39 38 a1d ¬ZVFunGFGGVFsuppZGsuppZ
40 29 39 pm2.61i FunGFGGVFsuppZGsuppZ