Metamath Proof Explorer


Theorem fvprmselelfz

Description: The value of the prime selection function is in a finite sequence of integers if the argument is in this finite sequence of integers. (Contributed by AV, 19-Aug-2020)

Ref Expression
Hypothesis fvprmselelfz.f F=mifmm1
Assertion fvprmselelfz NX1NFX1N

Proof

Step Hyp Ref Expression
1 fvprmselelfz.f F=mifmm1
2 eleq1 m=XmX
3 id m=Xm=X
4 2 3 ifbieq1d m=Xifmm1=ifXX1
5 iftrue XifXX1=X
6 5 adantr XNX1NifXX1=X
7 4 6 sylan9eqr XNX1Nm=Xifmm1=X
8 elfznn X1NX
9 8 adantl NX1NX
10 9 adantl XNX1NX
11 1 7 10 10 fvmptd2 XNX1NFX=X
12 simprr XNX1NX1N
13 11 12 eqeltrd XNX1NFX1N
14 iffalse ¬XifXX1=1
15 14 adantr ¬XNX1NifXX1=1
16 4 15 sylan9eqr ¬XNX1Nm=Xifmm1=1
17 9 adantl ¬XNX1NX
18 1nn 1
19 18 a1i ¬XNX1N1
20 1 16 17 19 fvmptd2 ¬XNX1NFX=1
21 elnnuz NN1
22 eluzfz1 N111N
23 21 22 sylbi N11N
24 23 adantr NX1N11N
25 24 adantl ¬XNX1N11N
26 20 25 eqeltrd ¬XNX1NFX1N
27 13 26 pm2.61ian NX1NFX1N