Metamath Proof Explorer


Theorem fzdif1

Description: Split the first element of a finite set of sequential integers. More generic than fzpred . Analogous to fzdif2 . (Contributed by AV, 12-Sep-2025)

Ref Expression
Assertion fzdif1 N M M N M = M + 1 N

Proof

Step Hyp Ref Expression
1 eldif x M N M x M N ¬ x M
2 elsng x M N x M x = M
3 2 necon3bbid x M N ¬ x M x M
4 fzne1 x M N x M x M + 1 N
5 3 4 sylbida x M N ¬ x M x M + 1 N
6 eluzel2 N M M
7 6 uzidd N M M M
8 peano2uz M M M + 1 M
9 fzss1 M + 1 M M + 1 N M N
10 7 8 9 3syl N M M + 1 N M N
11 10 sselda N M x M + 1 N x M N
12 elfz2 x M + 1 N M + 1 N x M + 1 x x N
13 6 zred N M M
14 13 adantl M + 1 N x M + 1 x x N N M M
15 simp3 M + 1 N x x
16 zltp1le M x M < x M + 1 x
17 6 15 16 syl2anr M + 1 N x N M M < x M + 1 x
18 17 biimprd M + 1 N x N M M + 1 x M < x
19 18 a1d M + 1 N x N M x N M + 1 x M < x
20 19 ex M + 1 N x N M x N M + 1 x M < x
21 20 com24 M + 1 N x M + 1 x x N N M M < x
22 21 imp42 M + 1 N x M + 1 x x N N M M < x
23 14 22 gtned M + 1 N x M + 1 x x N N M x M
24 23 ex M + 1 N x M + 1 x x N N M x M
25 12 24 sylbi x M + 1 N N M x M
26 25 impcom N M x M + 1 N x M
27 nelsn x M ¬ x M
28 26 27 syl N M x M + 1 N ¬ x M
29 11 28 jca N M x M + 1 N x M N ¬ x M
30 29 ex N M x M + 1 N x M N ¬ x M
31 5 30 impbid2 N M x M N ¬ x M x M + 1 N
32 1 31 bitrid N M x M N M x M + 1 N
33 32 eqrdv N M M N M = M + 1 N