Metamath Proof Explorer


Theorem fzen2

Description: The cardinality of a finite set of sequential integers with arbitrary endpoints. (Contributed by Mario Carneiro, 13-Feb-2014)

Ref Expression
Hypothesis fzennn.1 G=recxVx+10ω
Assertion fzen2 NMMNG-1N+1-M

Proof

Step Hyp Ref Expression
1 fzennn.1 G=recxVx+10ω
2 eluzel2 NMM
3 eluzelz NMN
4 1z 1
5 zsubcl 1M1M
6 4 2 5 sylancr NM1M
7 fzen MN1MMNM+1-MN+1-M
8 2 3 6 7 syl3anc NMMNM+1-MN+1-M
9 2 zcnd NMM
10 ax-1cn 1
11 pncan3 M1M+1-M=1
12 9 10 11 sylancl NMM+1-M=1
13 zcn NN
14 zcn MM
15 addsubass N1MN+1-M=N+1-M
16 10 15 mp3an2 NMN+1-M=N+1-M
17 13 14 16 syl2an NMN+1-M=N+1-M
18 3 2 17 syl2anc NMN+1-M=N+1-M
19 18 eqcomd NMN+1-M=N+1-M
20 12 19 oveq12d NMM+1-MN+1-M=1N+1-M
21 8 20 breqtrd NMMN1N+1-M
22 peano2uz NMN+1M
23 uznn0sub N+1MN+1-M0
24 1 fzennn N+1-M01N+1-MG-1N+1-M
25 22 23 24 3syl NM1N+1-MG-1N+1-M
26 entr MN1N+1-M1N+1-MG-1N+1-MMNG-1N+1-M
27 21 25 26 syl2anc NMMNG-1N+1-M