Metamath Proof Explorer


Theorem fzmul

Description: Membership of a product in a finite interval of integers. (Contributed by Jeff Madsen, 17-Jun-2010)

Ref Expression
Assertion fzmul MNKJMNK JK MK N

Proof

Step Hyp Ref Expression
1 elfz1 MNJMNJMJJN
2 1 3adant3 MNKJMNJMJJN
3 zre MM
4 zre JJ
5 nnre KK
6 nngt0 K0<K
7 5 6 jca KK0<K
8 lemul2 MJK0<KMJK MK J
9 3 4 7 8 syl3an MJKMJK MK J
10 9 3expa MJKMJK MK J
11 10 biimpd MJKMJK MK J
12 11 adantllr MNJKMJK MK J
13 zre NN
14 lemul2 JNK0<KJNK JK N
15 4 13 7 14 syl3an JNKJNK JK N
16 15 3expa JNKJNK JK N
17 16 ancom1s NJKJNK JK N
18 17 biimpd NJKJNK JK N
19 18 adantlll MNJKJNK JK N
20 12 19 anim12d MNJKMJJNK MK JK JK N
21 zmulcl KMK M
22 21 ex KMK M
23 zmulcl KNK N
24 23 ex KNK N
25 zmulcl KJK J
26 25 ex KJK J
27 22 24 26 3anim123d KMNJK MK NK J
28 elfz K JK MK NK JK MK NK MK JK JK N
29 28 3coml K MK NK JK JK MK NK MK JK JK N
30 27 29 syl6 KMNJK JK MK NK MK JK JK N
31 nnz KK
32 30 31 syl11 MNJKK JK MK NK MK JK JK N
33 32 3expa MNJKK JK MK NK MK JK JK N
34 33 imp MNJKK JK MK NK MK JK JK N
35 20 34 sylibrd MNJKMJJNK JK MK N
36 35 an32s MNKJMJJNK JK MK N
37 36 exp4b MNKJMJJNK JK MK N
38 37 3impd MNKJMJJNK JK MK N
39 38 3impa MNKJMJJNK JK MK N
40 2 39 sylbid MNKJMNK JK MK N