Metamath Proof Explorer


Theorem fzmul

Description: Membership of a product in a finite interval of integers. (Contributed by Jeff Madsen, 17-Jun-2010)

Ref Expression
Assertion fzmul M N K J M N K J K M K N

Proof

Step Hyp Ref Expression
1 elfz1 M N J M N J M J J N
2 1 3adant3 M N K J M N J M J J N
3 zre M M
4 zre J J
5 nnre K K
6 nngt0 K 0 < K
7 5 6 jca K K 0 < K
8 lemul2 M J K 0 < K M J K M K J
9 3 4 7 8 syl3an M J K M J K M K J
10 9 3expa M J K M J K M K J
11 10 biimpd M J K M J K M K J
12 11 adantllr M N J K M J K M K J
13 zre N N
14 lemul2 J N K 0 < K J N K J K N
15 4 13 7 14 syl3an J N K J N K J K N
16 15 3expa J N K J N K J K N
17 16 ancom1s N J K J N K J K N
18 17 biimpd N J K J N K J K N
19 18 adantlll M N J K J N K J K N
20 12 19 anim12d M N J K M J J N K M K J K J K N
21 zmulcl K M K M
22 21 ex K M K M
23 zmulcl K N K N
24 23 ex K N K N
25 zmulcl K J K J
26 25 ex K J K J
27 22 24 26 3anim123d K M N J K M K N K J
28 elfz K J K M K N K J K M K N K M K J K J K N
29 28 3coml K M K N K J K J K M K N K M K J K J K N
30 27 29 syl6 K M N J K J K M K N K M K J K J K N
31 nnz K K
32 30 31 syl11 M N J K K J K M K N K M K J K J K N
33 32 3expa M N J K K J K M K N K M K J K J K N
34 33 imp M N J K K J K M K N K M K J K J K N
35 20 34 sylibrd M N J K M J J N K J K M K N
36 35 an32s M N K J M J J N K J K M K N
37 36 exp4b M N K J M J J N K J K M K N
38 37 3impd M N K J M J J N K J K M K N
39 38 3impa M N K J M J J N K J K M K N
40 2 39 sylbid M N K J M N K J K M K N