Step |
Hyp |
Ref |
Expression |
1 |
|
elfz1 |
|
2 |
1
|
3adant3 |
|
3 |
|
zre |
|
4 |
|
zre |
|
5 |
|
nnre |
|
6 |
|
nngt0 |
|
7 |
5 6
|
jca |
|
8 |
|
lemul2 |
|
9 |
3 4 7 8
|
syl3an |
|
10 |
9
|
3expa |
|
11 |
10
|
biimpd |
|
12 |
11
|
adantllr |
|
13 |
|
zre |
|
14 |
|
lemul2 |
|
15 |
4 13 7 14
|
syl3an |
|
16 |
15
|
3expa |
|
17 |
16
|
ancom1s |
|
18 |
17
|
biimpd |
|
19 |
18
|
adantlll |
|
20 |
12 19
|
anim12d |
|
21 |
|
zmulcl |
|
22 |
21
|
ex |
|
23 |
|
zmulcl |
|
24 |
23
|
ex |
|
25 |
|
zmulcl |
|
26 |
25
|
ex |
|
27 |
22 24 26
|
3anim123d |
|
28 |
|
elfz |
|
29 |
28
|
3coml |
|
30 |
27 29
|
syl6 |
|
31 |
|
nnz |
|
32 |
30 31
|
syl11 |
|
33 |
32
|
3expa |
|
34 |
33
|
imp |
|
35 |
20 34
|
sylibrd |
|
36 |
35
|
an32s |
|
37 |
36
|
exp4b |
|
38 |
37
|
3impd |
|
39 |
38
|
3impa |
|
40 |
2 39
|
sylbid |
|