Description: Membership of a product in a finite interval of integers. (Contributed by Jeff Madsen, 17-Jun-2010)
Ref | Expression | ||
---|---|---|---|
Assertion | fzmul | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfz1 | |
|
2 | 1 | 3adant3 | |
3 | zre | |
|
4 | zre | |
|
5 | nnre | |
|
6 | nngt0 | |
|
7 | 5 6 | jca | |
8 | lemul2 | |
|
9 | 3 4 7 8 | syl3an | |
10 | 9 | 3expa | |
11 | 10 | biimpd | |
12 | 11 | adantllr | |
13 | zre | |
|
14 | lemul2 | |
|
15 | 4 13 7 14 | syl3an | |
16 | 15 | 3expa | |
17 | 16 | ancom1s | |
18 | 17 | biimpd | |
19 | 18 | adantlll | |
20 | 12 19 | anim12d | |
21 | zmulcl | |
|
22 | 21 | ex | |
23 | zmulcl | |
|
24 | 23 | ex | |
25 | zmulcl | |
|
26 | 25 | ex | |
27 | 22 24 26 | 3anim123d | |
28 | elfz | |
|
29 | 28 | 3coml | |
30 | 27 29 | syl6 | |
31 | nnz | |
|
32 | 30 31 | syl11 | |
33 | 32 | 3expa | |
34 | 33 | imp | |
35 | 20 34 | sylibrd | |
36 | 35 | an32s | |
37 | 36 | exp4b | |
38 | 37 | 3impd | |
39 | 38 | 3impa | |
40 | 2 39 | sylbid | |