Metamath Proof Explorer


Theorem fzn

Description: A finite set of sequential integers is empty if the bounds are reversed. (Contributed by NM, 22-Aug-2005)

Ref Expression
Assertion fzn MNN<MMN=

Proof

Step Hyp Ref Expression
1 fzn0 MNNM
2 eluz MNNMMN
3 1 2 bitrid MNMNMN
4 zre MM
5 zre NN
6 lenlt MNMN¬N<M
7 4 5 6 syl2an MNMN¬N<M
8 3 7 bitr2d MN¬N<MMN
9 8 necon4bbid MNN<MMN=