Metamath Proof Explorer


Theorem fzto1stinvn

Description: Value of the inverse of our permutation P at I . (Contributed by Thierry Arnoux, 23-Aug-2020)

Ref Expression
Hypotheses psgnfzto1st.d D=1N
psgnfzto1st.p P=iDifi=1IifiIi1i
psgnfzto1st.g G=SymGrpD
psgnfzto1st.b B=BaseG
Assertion fzto1stinvn IDP-1I=1

Proof

Step Hyp Ref Expression
1 psgnfzto1st.d D=1N
2 psgnfzto1st.p P=iDifi=1IifiIi1i
3 psgnfzto1st.g G=SymGrpD
4 psgnfzto1st.b B=BaseG
5 1 2 fzto1stfv1 IDP1=I
6 5 fveq2d IDP-1P1=P-1I
7 1 2 3 4 fzto1st IDPB
8 3 4 symgbasf1o PBP:D1-1 ontoD
9 7 8 syl IDP:D1-1 ontoD
10 elfzuz2 I1NN1
11 10 1 eleq2s IDN1
12 eluzfz1 N111N
13 12 1 eleqtrrdi N11D
14 11 13 syl ID1D
15 f1ocnvfv1 P:D1-1 ontoD1DP-1P1=1
16 9 14 15 syl2anc IDP-1P1=1
17 6 16 eqtr3d IDP-1I=1