Metamath Proof Explorer


Theorem fztpval

Description: Two ways of defining the first three values of a sequence on NN . (Contributed by NM, 13-Sep-2011)

Ref Expression
Assertion fztpval x13Fx=ifx=1Aifx=2BCF1=AF2=BF3=C

Proof

Step Hyp Ref Expression
1 1z 1
2 fztp 111+2=11+11+2
3 1 2 ax-mp 11+2=11+11+2
4 df-3 3=2+1
5 2cn 2
6 ax-1cn 1
7 5 6 addcomi 2+1=1+2
8 4 7 eqtri 3=1+2
9 8 oveq2i 13=11+2
10 tpeq3 3=1+2123=121+2
11 8 10 ax-mp 123=121+2
12 df-2 2=1+1
13 tpeq2 2=1+1121+2=11+11+2
14 12 13 ax-mp 121+2=11+11+2
15 11 14 eqtri 123=11+11+2
16 3 9 15 3eqtr4i 13=123
17 16 raleqi x13Fx=ifx=1Aifx=2BCx123Fx=ifx=1Aifx=2BC
18 1ex 1V
19 2ex 2V
20 3ex 3V
21 fveq2 x=1Fx=F1
22 iftrue x=1ifx=1Aifx=2BC=A
23 21 22 eqeq12d x=1Fx=ifx=1Aifx=2BCF1=A
24 fveq2 x=2Fx=F2
25 1re 1
26 1lt2 1<2
27 25 26 gtneii 21
28 neeq1 x=2x121
29 27 28 mpbiri x=2x1
30 ifnefalse x1ifx=1Aifx=2BC=ifx=2BC
31 29 30 syl x=2ifx=1Aifx=2BC=ifx=2BC
32 iftrue x=2ifx=2BC=B
33 31 32 eqtrd x=2ifx=1Aifx=2BC=B
34 24 33 eqeq12d x=2Fx=ifx=1Aifx=2BCF2=B
35 fveq2 x=3Fx=F3
36 1lt3 1<3
37 25 36 gtneii 31
38 neeq1 x=3x131
39 37 38 mpbiri x=3x1
40 39 30 syl x=3ifx=1Aifx=2BC=ifx=2BC
41 2re 2
42 2lt3 2<3
43 41 42 gtneii 32
44 neeq1 x=3x232
45 43 44 mpbiri x=3x2
46 ifnefalse x2ifx=2BC=C
47 45 46 syl x=3ifx=2BC=C
48 40 47 eqtrd x=3ifx=1Aifx=2BC=C
49 35 48 eqeq12d x=3Fx=ifx=1Aifx=2BCF3=C
50 18 19 20 23 34 49 raltp x123Fx=ifx=1Aifx=2BCF1=AF2=BF3=C
51 17 50 bitri x13Fx=ifx=1Aifx=2BCF1=AF2=BF3=C