| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1z |  | 
						
							| 2 |  | fztp |  | 
						
							| 3 | 1 2 | ax-mp |  | 
						
							| 4 |  | df-3 |  | 
						
							| 5 |  | 2cn |  | 
						
							| 6 |  | ax-1cn |  | 
						
							| 7 | 5 6 | addcomi |  | 
						
							| 8 | 4 7 | eqtri |  | 
						
							| 9 | 8 | oveq2i |  | 
						
							| 10 |  | tpeq3 |  | 
						
							| 11 | 8 10 | ax-mp |  | 
						
							| 12 |  | df-2 |  | 
						
							| 13 |  | tpeq2 |  | 
						
							| 14 | 12 13 | ax-mp |  | 
						
							| 15 | 11 14 | eqtri |  | 
						
							| 16 | 3 9 15 | 3eqtr4i |  | 
						
							| 17 | 16 | raleqi |  | 
						
							| 18 |  | 1ex |  | 
						
							| 19 |  | 2ex |  | 
						
							| 20 |  | 3ex |  | 
						
							| 21 |  | fveq2 |  | 
						
							| 22 |  | iftrue |  | 
						
							| 23 | 21 22 | eqeq12d |  | 
						
							| 24 |  | fveq2 |  | 
						
							| 25 |  | 1re |  | 
						
							| 26 |  | 1lt2 |  | 
						
							| 27 | 25 26 | gtneii |  | 
						
							| 28 |  | neeq1 |  | 
						
							| 29 | 27 28 | mpbiri |  | 
						
							| 30 |  | ifnefalse |  | 
						
							| 31 | 29 30 | syl |  | 
						
							| 32 |  | iftrue |  | 
						
							| 33 | 31 32 | eqtrd |  | 
						
							| 34 | 24 33 | eqeq12d |  | 
						
							| 35 |  | fveq2 |  | 
						
							| 36 |  | 1lt3 |  | 
						
							| 37 | 25 36 | gtneii |  | 
						
							| 38 |  | neeq1 |  | 
						
							| 39 | 37 38 | mpbiri |  | 
						
							| 40 | 39 30 | syl |  | 
						
							| 41 |  | 2re |  | 
						
							| 42 |  | 2lt3 |  | 
						
							| 43 | 41 42 | gtneii |  | 
						
							| 44 |  | neeq1 |  | 
						
							| 45 | 43 44 | mpbiri |  | 
						
							| 46 |  | ifnefalse |  | 
						
							| 47 | 45 46 | syl |  | 
						
							| 48 | 40 47 | eqtrd |  | 
						
							| 49 | 35 48 | eqeq12d |  | 
						
							| 50 | 18 19 20 23 34 49 | raltp |  | 
						
							| 51 | 17 50 | bitri |  |