| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1z |
|
| 2 |
|
fztp |
|
| 3 |
1 2
|
ax-mp |
|
| 4 |
|
df-3 |
|
| 5 |
|
2cn |
|
| 6 |
|
ax-1cn |
|
| 7 |
5 6
|
addcomi |
|
| 8 |
4 7
|
eqtri |
|
| 9 |
8
|
oveq2i |
|
| 10 |
|
tpeq3 |
|
| 11 |
8 10
|
ax-mp |
|
| 12 |
|
df-2 |
|
| 13 |
|
tpeq2 |
|
| 14 |
12 13
|
ax-mp |
|
| 15 |
11 14
|
eqtri |
|
| 16 |
3 9 15
|
3eqtr4i |
|
| 17 |
16
|
raleqi |
|
| 18 |
|
1ex |
|
| 19 |
|
2ex |
|
| 20 |
|
3ex |
|
| 21 |
|
fveq2 |
|
| 22 |
|
iftrue |
|
| 23 |
21 22
|
eqeq12d |
|
| 24 |
|
fveq2 |
|
| 25 |
|
1re |
|
| 26 |
|
1lt2 |
|
| 27 |
25 26
|
gtneii |
|
| 28 |
|
neeq1 |
|
| 29 |
27 28
|
mpbiri |
|
| 30 |
|
ifnefalse |
|
| 31 |
29 30
|
syl |
|
| 32 |
|
iftrue |
|
| 33 |
31 32
|
eqtrd |
|
| 34 |
24 33
|
eqeq12d |
|
| 35 |
|
fveq2 |
|
| 36 |
|
1lt3 |
|
| 37 |
25 36
|
gtneii |
|
| 38 |
|
neeq1 |
|
| 39 |
37 38
|
mpbiri |
|
| 40 |
39 30
|
syl |
|
| 41 |
|
2re |
|
| 42 |
|
2lt3 |
|
| 43 |
41 42
|
gtneii |
|
| 44 |
|
neeq1 |
|
| 45 |
43 44
|
mpbiri |
|
| 46 |
|
ifnefalse |
|
| 47 |
45 46
|
syl |
|
| 48 |
40 47
|
eqtrd |
|
| 49 |
35 48
|
eqeq12d |
|
| 50 |
18 19 20 23 34 49
|
raltp |
|
| 51 |
17 50
|
bitri |
|