Metamath Proof Explorer


Theorem fzunt

Description: Union of two adjacent finite sets of sequential integers that share a common endpoint. (Suggested by NM, 21-Jul-2005.) (Contributed by RP, 14-Dec-2024)

Ref Expression
Assertion fzunt KMNKMMNKMMN=KN

Proof

Step Hyp Ref Expression
1 zre KK
2 zre MM
3 zre NN
4 zre jj
5 simprl KMNKMMNjjMj
6 simpl2 KMNKMMNM
7 6 adantr KMNKMMNjjMM
8 simpll3 KMNKMMNjjMN
9 simprr KMNKMMNjjMjM
10 simprr KMNKMMNMN
11 10 adantr KMNKMMNjjMMN
12 5 7 8 9 11 letrd KMNKMMNjjMjN
13 12 expr KMNKMMNjjMjN
14 13 anim2d KMNKMMNjKjjMKjjN
15 simpll1 KMNKMMNjMjK
16 6 adantr KMNKMMNjMjM
17 simprl KMNKMMNjMjj
18 simprl KMNKMMNKM
19 18 adantr KMNKMMNjMjKM
20 simprr KMNKMMNjMjMj
21 15 16 17 19 20 letrd KMNKMMNjMjKj
22 21 expr KMNKMMNjMjKj
23 22 anim1d KMNKMMNjMjjNKjjN
24 14 23 jaod KMNKMMNjKjjMMjjNKjjN
25 orc KjKjMj
26 orc KjKjjN
27 25 26 jca KjKjMjKjjN
28 27 ad2antrl KMNKMMNjKjjNKjMjKjjN
29 letric jMjMMj
30 29 ancoms MjjMMj
31 6 30 sylan KMNKMMNjjMMj
32 31 adantr KMNKMMNjKjjNjMMj
33 simprr KMNKMMNjKjjNjN
34 33 olcd KMNKMMNjKjjNjMjN
35 32 34 jca KMNKMMNjKjjNjMMjjMjN
36 orddi KjjMMjjNKjMjKjjNjMMjjMjN
37 28 35 36 sylanbrc KMNKMMNjKjjNKjjMMjjN
38 37 ex KMNKMMNjKjjNKjjMMjjN
39 24 38 impbid KMNKMMNjKjjMMjjNKjjN
40 4 39 sylan2 KMNKMMNjKjjMMjjNKjjN
41 40 pm5.32da KMNKMMNjKjjMMjjNjKjjN
42 1 2 3 41 syl3anl KMNKMMNjKjjMMjjNjKjjN
43 simp1 KMNK
44 simp2 KMNM
45 elfz1 KMjKMjKjjM
46 43 44 45 syl2anc KMNjKMjKjjM
47 3anass jKjjMjKjjM
48 46 47 bitrdi KMNjKMjKjjM
49 simp3 KMNN
50 elfz1 MNjMNjMjjN
51 44 49 50 syl2anc KMNjMNjMjjN
52 3anass jMjjNjMjjN
53 51 52 bitrdi KMNjMNjMjjN
54 48 53 orbi12d KMNjKMjMNjKjjMjMjjN
55 elun jKMMNjKMjMN
56 andi jKjjMMjjNjKjjMjMjjN
57 54 55 56 3bitr4g KMNjKMMNjKjjMMjjN
58 57 adantr KMNKMMNjKMMNjKjjMMjjN
59 elfz1 KNjKNjKjjN
60 43 49 59 syl2anc KMNjKNjKjjN
61 3anass jKjjNjKjjN
62 60 61 bitrdi KMNjKNjKjjN
63 62 adantr KMNKMMNjKNjKjjN
64 42 58 63 3bitr4d KMNKMMNjKMMNjKN
65 64 eqrdv KMNKMMNKMMN=KN