Metamath Proof Explorer


Theorem fzunt

Description: Union of two adjacent finite sets of sequential integers that share a common endpoint. (Suggested by NM, 21-Jul-2005.) (Contributed by RP, 14-Dec-2024)

Ref Expression
Assertion fzunt K M N K M M N K M M N = K N

Proof

Step Hyp Ref Expression
1 zre K K
2 zre M M
3 zre N N
4 zre j j
5 simprl K M N K M M N j j M j
6 simpl2 K M N K M M N M
7 6 adantr K M N K M M N j j M M
8 simpll3 K M N K M M N j j M N
9 simprr K M N K M M N j j M j M
10 simprr K M N K M M N M N
11 10 adantr K M N K M M N j j M M N
12 5 7 8 9 11 letrd K M N K M M N j j M j N
13 12 expr K M N K M M N j j M j N
14 13 anim2d K M N K M M N j K j j M K j j N
15 simpll1 K M N K M M N j M j K
16 6 adantr K M N K M M N j M j M
17 simprl K M N K M M N j M j j
18 simprl K M N K M M N K M
19 18 adantr K M N K M M N j M j K M
20 simprr K M N K M M N j M j M j
21 15 16 17 19 20 letrd K M N K M M N j M j K j
22 21 expr K M N K M M N j M j K j
23 22 anim1d K M N K M M N j M j j N K j j N
24 14 23 jaod K M N K M M N j K j j M M j j N K j j N
25 orc K j K j M j
26 orc K j K j j N
27 25 26 jca K j K j M j K j j N
28 27 ad2antrl K M N K M M N j K j j N K j M j K j j N
29 letric j M j M M j
30 29 ancoms M j j M M j
31 6 30 sylan K M N K M M N j j M M j
32 31 adantr K M N K M M N j K j j N j M M j
33 simprr K M N K M M N j K j j N j N
34 33 olcd K M N K M M N j K j j N j M j N
35 32 34 jca K M N K M M N j K j j N j M M j j M j N
36 orddi K j j M M j j N K j M j K j j N j M M j j M j N
37 28 35 36 sylanbrc K M N K M M N j K j j N K j j M M j j N
38 37 ex K M N K M M N j K j j N K j j M M j j N
39 24 38 impbid K M N K M M N j K j j M M j j N K j j N
40 4 39 sylan2 K M N K M M N j K j j M M j j N K j j N
41 40 pm5.32da K M N K M M N j K j j M M j j N j K j j N
42 1 2 3 41 syl3anl K M N K M M N j K j j M M j j N j K j j N
43 simp1 K M N K
44 simp2 K M N M
45 elfz1 K M j K M j K j j M
46 43 44 45 syl2anc K M N j K M j K j j M
47 3anass j K j j M j K j j M
48 46 47 bitrdi K M N j K M j K j j M
49 simp3 K M N N
50 elfz1 M N j M N j M j j N
51 44 49 50 syl2anc K M N j M N j M j j N
52 3anass j M j j N j M j j N
53 51 52 bitrdi K M N j M N j M j j N
54 48 53 orbi12d K M N j K M j M N j K j j M j M j j N
55 elun j K M M N j K M j M N
56 andi j K j j M M j j N j K j j M j M j j N
57 54 55 56 3bitr4g K M N j K M M N j K j j M M j j N
58 57 adantr K M N K M M N j K M M N j K j j M M j j N
59 elfz1 K N j K N j K j j N
60 43 49 59 syl2anc K M N j K N j K j j N
61 3anass j K j j N j K j j N
62 60 61 bitrdi K M N j K N j K j j N
63 62 adantr K M N K M M N j K N j K j j N
64 42 58 63 3bitr4d K M N K M M N j K M M N j K N
65 64 eqrdv K M N K M M N K M M N = K N