| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zre | ⊢ ( 𝐾  ∈  ℤ  →  𝐾  ∈  ℝ ) | 
						
							| 2 |  | zre | ⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∈  ℝ ) | 
						
							| 3 |  | zre | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ℝ ) | 
						
							| 4 |  | zre | ⊢ ( 𝑗  ∈  ℤ  →  𝑗  ∈  ℝ ) | 
						
							| 5 |  | simprl | ⊢ ( ( ( ( 𝐾  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  ∧  ( 𝐾  ≤  𝑀  ∧  𝑀  ≤  𝑁 ) )  ∧  ( 𝑗  ∈  ℝ  ∧  𝑗  ≤  𝑀 ) )  →  𝑗  ∈  ℝ ) | 
						
							| 6 |  | simpl2 | ⊢ ( ( ( 𝐾  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  ∧  ( 𝐾  ≤  𝑀  ∧  𝑀  ≤  𝑁 ) )  →  𝑀  ∈  ℝ ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( ( ( 𝐾  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  ∧  ( 𝐾  ≤  𝑀  ∧  𝑀  ≤  𝑁 ) )  ∧  ( 𝑗  ∈  ℝ  ∧  𝑗  ≤  𝑀 ) )  →  𝑀  ∈  ℝ ) | 
						
							| 8 |  | simpll3 | ⊢ ( ( ( ( 𝐾  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  ∧  ( 𝐾  ≤  𝑀  ∧  𝑀  ≤  𝑁 ) )  ∧  ( 𝑗  ∈  ℝ  ∧  𝑗  ≤  𝑀 ) )  →  𝑁  ∈  ℝ ) | 
						
							| 9 |  | simprr | ⊢ ( ( ( ( 𝐾  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  ∧  ( 𝐾  ≤  𝑀  ∧  𝑀  ≤  𝑁 ) )  ∧  ( 𝑗  ∈  ℝ  ∧  𝑗  ≤  𝑀 ) )  →  𝑗  ≤  𝑀 ) | 
						
							| 10 |  | simprr | ⊢ ( ( ( 𝐾  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  ∧  ( 𝐾  ≤  𝑀  ∧  𝑀  ≤  𝑁 ) )  →  𝑀  ≤  𝑁 ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( ( ( 𝐾  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  ∧  ( 𝐾  ≤  𝑀  ∧  𝑀  ≤  𝑁 ) )  ∧  ( 𝑗  ∈  ℝ  ∧  𝑗  ≤  𝑀 ) )  →  𝑀  ≤  𝑁 ) | 
						
							| 12 | 5 7 8 9 11 | letrd | ⊢ ( ( ( ( 𝐾  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  ∧  ( 𝐾  ≤  𝑀  ∧  𝑀  ≤  𝑁 ) )  ∧  ( 𝑗  ∈  ℝ  ∧  𝑗  ≤  𝑀 ) )  →  𝑗  ≤  𝑁 ) | 
						
							| 13 | 12 | expr | ⊢ ( ( ( ( 𝐾  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  ∧  ( 𝐾  ≤  𝑀  ∧  𝑀  ≤  𝑁 ) )  ∧  𝑗  ∈  ℝ )  →  ( 𝑗  ≤  𝑀  →  𝑗  ≤  𝑁 ) ) | 
						
							| 14 | 13 | anim2d | ⊢ ( ( ( ( 𝐾  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  ∧  ( 𝐾  ≤  𝑀  ∧  𝑀  ≤  𝑁 ) )  ∧  𝑗  ∈  ℝ )  →  ( ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑀 )  →  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) | 
						
							| 15 |  | simpll1 | ⊢ ( ( ( ( 𝐾  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  ∧  ( 𝐾  ≤  𝑀  ∧  𝑀  ≤  𝑁 ) )  ∧  ( 𝑗  ∈  ℝ  ∧  𝑀  ≤  𝑗 ) )  →  𝐾  ∈  ℝ ) | 
						
							| 16 | 6 | adantr | ⊢ ( ( ( ( 𝐾  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  ∧  ( 𝐾  ≤  𝑀  ∧  𝑀  ≤  𝑁 ) )  ∧  ( 𝑗  ∈  ℝ  ∧  𝑀  ≤  𝑗 ) )  →  𝑀  ∈  ℝ ) | 
						
							| 17 |  | simprl | ⊢ ( ( ( ( 𝐾  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  ∧  ( 𝐾  ≤  𝑀  ∧  𝑀  ≤  𝑁 ) )  ∧  ( 𝑗  ∈  ℝ  ∧  𝑀  ≤  𝑗 ) )  →  𝑗  ∈  ℝ ) | 
						
							| 18 |  | simprl | ⊢ ( ( ( 𝐾  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  ∧  ( 𝐾  ≤  𝑀  ∧  𝑀  ≤  𝑁 ) )  →  𝐾  ≤  𝑀 ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( ( ( 𝐾  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  ∧  ( 𝐾  ≤  𝑀  ∧  𝑀  ≤  𝑁 ) )  ∧  ( 𝑗  ∈  ℝ  ∧  𝑀  ≤  𝑗 ) )  →  𝐾  ≤  𝑀 ) | 
						
							| 20 |  | simprr | ⊢ ( ( ( ( 𝐾  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  ∧  ( 𝐾  ≤  𝑀  ∧  𝑀  ≤  𝑁 ) )  ∧  ( 𝑗  ∈  ℝ  ∧  𝑀  ≤  𝑗 ) )  →  𝑀  ≤  𝑗 ) | 
						
							| 21 | 15 16 17 19 20 | letrd | ⊢ ( ( ( ( 𝐾  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  ∧  ( 𝐾  ≤  𝑀  ∧  𝑀  ≤  𝑁 ) )  ∧  ( 𝑗  ∈  ℝ  ∧  𝑀  ≤  𝑗 ) )  →  𝐾  ≤  𝑗 ) | 
						
							| 22 | 21 | expr | ⊢ ( ( ( ( 𝐾  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  ∧  ( 𝐾  ≤  𝑀  ∧  𝑀  ≤  𝑁 ) )  ∧  𝑗  ∈  ℝ )  →  ( 𝑀  ≤  𝑗  →  𝐾  ≤  𝑗 ) ) | 
						
							| 23 | 22 | anim1d | ⊢ ( ( ( ( 𝐾  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  ∧  ( 𝐾  ≤  𝑀  ∧  𝑀  ≤  𝑁 ) )  ∧  𝑗  ∈  ℝ )  →  ( ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 )  →  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) | 
						
							| 24 | 14 23 | jaod | ⊢ ( ( ( ( 𝐾  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  ∧  ( 𝐾  ≤  𝑀  ∧  𝑀  ≤  𝑁 ) )  ∧  𝑗  ∈  ℝ )  →  ( ( ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑀 )  ∨  ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) )  →  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) | 
						
							| 25 |  | orc | ⊢ ( 𝐾  ≤  𝑗  →  ( 𝐾  ≤  𝑗  ∨  𝑀  ≤  𝑗 ) ) | 
						
							| 26 |  | orc | ⊢ ( 𝐾  ≤  𝑗  →  ( 𝐾  ≤  𝑗  ∨  𝑗  ≤  𝑁 ) ) | 
						
							| 27 | 25 26 | jca | ⊢ ( 𝐾  ≤  𝑗  →  ( ( 𝐾  ≤  𝑗  ∨  𝑀  ≤  𝑗 )  ∧  ( 𝐾  ≤  𝑗  ∨  𝑗  ≤  𝑁 ) ) ) | 
						
							| 28 | 27 | ad2antrl | ⊢ ( ( ( ( ( 𝐾  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  ∧  ( 𝐾  ≤  𝑀  ∧  𝑀  ≤  𝑁 ) )  ∧  𝑗  ∈  ℝ )  ∧  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) )  →  ( ( 𝐾  ≤  𝑗  ∨  𝑀  ≤  𝑗 )  ∧  ( 𝐾  ≤  𝑗  ∨  𝑗  ≤  𝑁 ) ) ) | 
						
							| 29 |  | letric | ⊢ ( ( 𝑗  ∈  ℝ  ∧  𝑀  ∈  ℝ )  →  ( 𝑗  ≤  𝑀  ∨  𝑀  ≤  𝑗 ) ) | 
						
							| 30 | 29 | ancoms | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑗  ∈  ℝ )  →  ( 𝑗  ≤  𝑀  ∨  𝑀  ≤  𝑗 ) ) | 
						
							| 31 | 6 30 | sylan | ⊢ ( ( ( ( 𝐾  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  ∧  ( 𝐾  ≤  𝑀  ∧  𝑀  ≤  𝑁 ) )  ∧  𝑗  ∈  ℝ )  →  ( 𝑗  ≤  𝑀  ∨  𝑀  ≤  𝑗 ) ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( ( ( ( 𝐾  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  ∧  ( 𝐾  ≤  𝑀  ∧  𝑀  ≤  𝑁 ) )  ∧  𝑗  ∈  ℝ )  ∧  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) )  →  ( 𝑗  ≤  𝑀  ∨  𝑀  ≤  𝑗 ) ) | 
						
							| 33 |  | simprr | ⊢ ( ( ( ( ( 𝐾  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  ∧  ( 𝐾  ≤  𝑀  ∧  𝑀  ≤  𝑁 ) )  ∧  𝑗  ∈  ℝ )  ∧  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) )  →  𝑗  ≤  𝑁 ) | 
						
							| 34 | 33 | olcd | ⊢ ( ( ( ( ( 𝐾  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  ∧  ( 𝐾  ≤  𝑀  ∧  𝑀  ≤  𝑁 ) )  ∧  𝑗  ∈  ℝ )  ∧  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) )  →  ( 𝑗  ≤  𝑀  ∨  𝑗  ≤  𝑁 ) ) | 
						
							| 35 | 32 34 | jca | ⊢ ( ( ( ( ( 𝐾  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  ∧  ( 𝐾  ≤  𝑀  ∧  𝑀  ≤  𝑁 ) )  ∧  𝑗  ∈  ℝ )  ∧  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) )  →  ( ( 𝑗  ≤  𝑀  ∨  𝑀  ≤  𝑗 )  ∧  ( 𝑗  ≤  𝑀  ∨  𝑗  ≤  𝑁 ) ) ) | 
						
							| 36 |  | orddi | ⊢ ( ( ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑀 )  ∨  ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) )  ↔  ( ( ( 𝐾  ≤  𝑗  ∨  𝑀  ≤  𝑗 )  ∧  ( 𝐾  ≤  𝑗  ∨  𝑗  ≤  𝑁 ) )  ∧  ( ( 𝑗  ≤  𝑀  ∨  𝑀  ≤  𝑗 )  ∧  ( 𝑗  ≤  𝑀  ∨  𝑗  ≤  𝑁 ) ) ) ) | 
						
							| 37 | 28 35 36 | sylanbrc | ⊢ ( ( ( ( ( 𝐾  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  ∧  ( 𝐾  ≤  𝑀  ∧  𝑀  ≤  𝑁 ) )  ∧  𝑗  ∈  ℝ )  ∧  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) )  →  ( ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑀 )  ∨  ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) | 
						
							| 38 | 37 | ex | ⊢ ( ( ( ( 𝐾  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  ∧  ( 𝐾  ≤  𝑀  ∧  𝑀  ≤  𝑁 ) )  ∧  𝑗  ∈  ℝ )  →  ( ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 )  →  ( ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑀 )  ∨  ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) ) | 
						
							| 39 | 24 38 | impbid | ⊢ ( ( ( ( 𝐾  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  ∧  ( 𝐾  ≤  𝑀  ∧  𝑀  ≤  𝑁 ) )  ∧  𝑗  ∈  ℝ )  →  ( ( ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑀 )  ∨  ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) )  ↔  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) | 
						
							| 40 | 4 39 | sylan2 | ⊢ ( ( ( ( 𝐾  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  ∧  ( 𝐾  ≤  𝑀  ∧  𝑀  ≤  𝑁 ) )  ∧  𝑗  ∈  ℤ )  →  ( ( ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑀 )  ∨  ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) )  ↔  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) | 
						
							| 41 | 40 | pm5.32da | ⊢ ( ( ( 𝐾  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  ∧  ( 𝐾  ≤  𝑀  ∧  𝑀  ≤  𝑁 ) )  →  ( ( 𝑗  ∈  ℤ  ∧  ( ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑀 )  ∨  ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) )  ↔  ( 𝑗  ∈  ℤ  ∧  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) ) | 
						
							| 42 | 1 2 3 41 | syl3anl | ⊢ ( ( ( 𝐾  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 𝐾  ≤  𝑀  ∧  𝑀  ≤  𝑁 ) )  →  ( ( 𝑗  ∈  ℤ  ∧  ( ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑀 )  ∨  ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) )  ↔  ( 𝑗  ∈  ℤ  ∧  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) ) | 
						
							| 43 |  | simp1 | ⊢ ( ( 𝐾  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  𝐾  ∈  ℤ ) | 
						
							| 44 |  | simp2 | ⊢ ( ( 𝐾  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  𝑀  ∈  ℤ ) | 
						
							| 45 |  | elfz1 | ⊢ ( ( 𝐾  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( 𝑗  ∈  ( 𝐾 ... 𝑀 )  ↔  ( 𝑗  ∈  ℤ  ∧  𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑀 ) ) ) | 
						
							| 46 | 43 44 45 | syl2anc | ⊢ ( ( 𝐾  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑗  ∈  ( 𝐾 ... 𝑀 )  ↔  ( 𝑗  ∈  ℤ  ∧  𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑀 ) ) ) | 
						
							| 47 |  | 3anass | ⊢ ( ( 𝑗  ∈  ℤ  ∧  𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑀 )  ↔  ( 𝑗  ∈  ℤ  ∧  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑀 ) ) ) | 
						
							| 48 | 46 47 | bitrdi | ⊢ ( ( 𝐾  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑗  ∈  ( 𝐾 ... 𝑀 )  ↔  ( 𝑗  ∈  ℤ  ∧  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑀 ) ) ) ) | 
						
							| 49 |  | simp3 | ⊢ ( ( 𝐾  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  𝑁  ∈  ℤ ) | 
						
							| 50 |  | elfz1 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑗  ∈  ( 𝑀 ... 𝑁 )  ↔  ( 𝑗  ∈  ℤ  ∧  𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) | 
						
							| 51 | 44 49 50 | syl2anc | ⊢ ( ( 𝐾  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑗  ∈  ( 𝑀 ... 𝑁 )  ↔  ( 𝑗  ∈  ℤ  ∧  𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) | 
						
							| 52 |  | 3anass | ⊢ ( ( 𝑗  ∈  ℤ  ∧  𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 )  ↔  ( 𝑗  ∈  ℤ  ∧  ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) | 
						
							| 53 | 51 52 | bitrdi | ⊢ ( ( 𝐾  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑗  ∈  ( 𝑀 ... 𝑁 )  ↔  ( 𝑗  ∈  ℤ  ∧  ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) ) | 
						
							| 54 | 48 53 | orbi12d | ⊢ ( ( 𝐾  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( 𝑗  ∈  ( 𝐾 ... 𝑀 )  ∨  𝑗  ∈  ( 𝑀 ... 𝑁 ) )  ↔  ( ( 𝑗  ∈  ℤ  ∧  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑀 ) )  ∨  ( 𝑗  ∈  ℤ  ∧  ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) ) ) | 
						
							| 55 |  | elun | ⊢ ( 𝑗  ∈  ( ( 𝐾 ... 𝑀 )  ∪  ( 𝑀 ... 𝑁 ) )  ↔  ( 𝑗  ∈  ( 𝐾 ... 𝑀 )  ∨  𝑗  ∈  ( 𝑀 ... 𝑁 ) ) ) | 
						
							| 56 |  | andi | ⊢ ( ( 𝑗  ∈  ℤ  ∧  ( ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑀 )  ∨  ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) )  ↔  ( ( 𝑗  ∈  ℤ  ∧  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑀 ) )  ∨  ( 𝑗  ∈  ℤ  ∧  ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) ) | 
						
							| 57 | 54 55 56 | 3bitr4g | ⊢ ( ( 𝐾  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑗  ∈  ( ( 𝐾 ... 𝑀 )  ∪  ( 𝑀 ... 𝑁 ) )  ↔  ( 𝑗  ∈  ℤ  ∧  ( ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑀 )  ∨  ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) ) ) | 
						
							| 58 | 57 | adantr | ⊢ ( ( ( 𝐾  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 𝐾  ≤  𝑀  ∧  𝑀  ≤  𝑁 ) )  →  ( 𝑗  ∈  ( ( 𝐾 ... 𝑀 )  ∪  ( 𝑀 ... 𝑁 ) )  ↔  ( 𝑗  ∈  ℤ  ∧  ( ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑀 )  ∨  ( 𝑀  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) ) ) | 
						
							| 59 |  | elfz1 | ⊢ ( ( 𝐾  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑗  ∈  ( 𝐾 ... 𝑁 )  ↔  ( 𝑗  ∈  ℤ  ∧  𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) | 
						
							| 60 | 43 49 59 | syl2anc | ⊢ ( ( 𝐾  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑗  ∈  ( 𝐾 ... 𝑁 )  ↔  ( 𝑗  ∈  ℤ  ∧  𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) | 
						
							| 61 |  | 3anass | ⊢ ( ( 𝑗  ∈  ℤ  ∧  𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 )  ↔  ( 𝑗  ∈  ℤ  ∧  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) | 
						
							| 62 | 60 61 | bitrdi | ⊢ ( ( 𝐾  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑗  ∈  ( 𝐾 ... 𝑁 )  ↔  ( 𝑗  ∈  ℤ  ∧  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) ) | 
						
							| 63 | 62 | adantr | ⊢ ( ( ( 𝐾  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 𝐾  ≤  𝑀  ∧  𝑀  ≤  𝑁 ) )  →  ( 𝑗  ∈  ( 𝐾 ... 𝑁 )  ↔  ( 𝑗  ∈  ℤ  ∧  ( 𝐾  ≤  𝑗  ∧  𝑗  ≤  𝑁 ) ) ) ) | 
						
							| 64 | 42 58 63 | 3bitr4d | ⊢ ( ( ( 𝐾  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 𝐾  ≤  𝑀  ∧  𝑀  ≤  𝑁 ) )  →  ( 𝑗  ∈  ( ( 𝐾 ... 𝑀 )  ∪  ( 𝑀 ... 𝑁 ) )  ↔  𝑗  ∈  ( 𝐾 ... 𝑁 ) ) ) | 
						
							| 65 | 64 | eqrdv | ⊢ ( ( ( 𝐾  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 𝐾  ≤  𝑀  ∧  𝑀  ≤  𝑁 ) )  →  ( ( 𝐾 ... 𝑀 )  ∪  ( 𝑀 ... 𝑁 ) )  =  ( 𝐾 ... 𝑁 ) ) |