| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zre |
⊢ ( 𝐾 ∈ ℤ → 𝐾 ∈ ℝ ) |
| 2 |
|
zre |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) |
| 3 |
|
zre |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) |
| 4 |
|
zre |
⊢ ( 𝑗 ∈ ℤ → 𝑗 ∈ ℝ ) |
| 5 |
|
simprl |
⊢ ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ ( 𝑗 ∈ ℝ ∧ 𝑗 ≤ 𝑀 ) ) → 𝑗 ∈ ℝ ) |
| 6 |
|
simpl2 |
⊢ ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) → 𝑀 ∈ ℝ ) |
| 7 |
6
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ ( 𝑗 ∈ ℝ ∧ 𝑗 ≤ 𝑀 ) ) → 𝑀 ∈ ℝ ) |
| 8 |
|
simpll3 |
⊢ ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ ( 𝑗 ∈ ℝ ∧ 𝑗 ≤ 𝑀 ) ) → 𝑁 ∈ ℝ ) |
| 9 |
|
simprr |
⊢ ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ ( 𝑗 ∈ ℝ ∧ 𝑗 ≤ 𝑀 ) ) → 𝑗 ≤ 𝑀 ) |
| 10 |
|
simprr |
⊢ ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) → 𝑀 ≤ 𝑁 ) |
| 11 |
10
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ ( 𝑗 ∈ ℝ ∧ 𝑗 ≤ 𝑀 ) ) → 𝑀 ≤ 𝑁 ) |
| 12 |
5 7 8 9 11
|
letrd |
⊢ ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ ( 𝑗 ∈ ℝ ∧ 𝑗 ≤ 𝑀 ) ) → 𝑗 ≤ 𝑁 ) |
| 13 |
12
|
expr |
⊢ ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ 𝑗 ∈ ℝ ) → ( 𝑗 ≤ 𝑀 → 𝑗 ≤ 𝑁 ) ) |
| 14 |
13
|
anim2d |
⊢ ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ 𝑗 ∈ ℝ ) → ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) → ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
| 15 |
|
simpll1 |
⊢ ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ ( 𝑗 ∈ ℝ ∧ 𝑀 ≤ 𝑗 ) ) → 𝐾 ∈ ℝ ) |
| 16 |
6
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ ( 𝑗 ∈ ℝ ∧ 𝑀 ≤ 𝑗 ) ) → 𝑀 ∈ ℝ ) |
| 17 |
|
simprl |
⊢ ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ ( 𝑗 ∈ ℝ ∧ 𝑀 ≤ 𝑗 ) ) → 𝑗 ∈ ℝ ) |
| 18 |
|
simprl |
⊢ ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) → 𝐾 ≤ 𝑀 ) |
| 19 |
18
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ ( 𝑗 ∈ ℝ ∧ 𝑀 ≤ 𝑗 ) ) → 𝐾 ≤ 𝑀 ) |
| 20 |
|
simprr |
⊢ ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ ( 𝑗 ∈ ℝ ∧ 𝑀 ≤ 𝑗 ) ) → 𝑀 ≤ 𝑗 ) |
| 21 |
15 16 17 19 20
|
letrd |
⊢ ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ ( 𝑗 ∈ ℝ ∧ 𝑀 ≤ 𝑗 ) ) → 𝐾 ≤ 𝑗 ) |
| 22 |
21
|
expr |
⊢ ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ 𝑗 ∈ ℝ ) → ( 𝑀 ≤ 𝑗 → 𝐾 ≤ 𝑗 ) ) |
| 23 |
22
|
anim1d |
⊢ ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ 𝑗 ∈ ℝ ) → ( ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) → ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
| 24 |
14 23
|
jaod |
⊢ ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ 𝑗 ∈ ℝ ) → ( ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) → ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
| 25 |
|
orc |
⊢ ( 𝐾 ≤ 𝑗 → ( 𝐾 ≤ 𝑗 ∨ 𝑀 ≤ 𝑗 ) ) |
| 26 |
|
orc |
⊢ ( 𝐾 ≤ 𝑗 → ( 𝐾 ≤ 𝑗 ∨ 𝑗 ≤ 𝑁 ) ) |
| 27 |
25 26
|
jca |
⊢ ( 𝐾 ≤ 𝑗 → ( ( 𝐾 ≤ 𝑗 ∨ 𝑀 ≤ 𝑗 ) ∧ ( 𝐾 ≤ 𝑗 ∨ 𝑗 ≤ 𝑁 ) ) ) |
| 28 |
27
|
ad2antrl |
⊢ ( ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ 𝑗 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) → ( ( 𝐾 ≤ 𝑗 ∨ 𝑀 ≤ 𝑗 ) ∧ ( 𝐾 ≤ 𝑗 ∨ 𝑗 ≤ 𝑁 ) ) ) |
| 29 |
|
letric |
⊢ ( ( 𝑗 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( 𝑗 ≤ 𝑀 ∨ 𝑀 ≤ 𝑗 ) ) |
| 30 |
29
|
ancoms |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑗 ∈ ℝ ) → ( 𝑗 ≤ 𝑀 ∨ 𝑀 ≤ 𝑗 ) ) |
| 31 |
6 30
|
sylan |
⊢ ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ 𝑗 ∈ ℝ ) → ( 𝑗 ≤ 𝑀 ∨ 𝑀 ≤ 𝑗 ) ) |
| 32 |
31
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ 𝑗 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) → ( 𝑗 ≤ 𝑀 ∨ 𝑀 ≤ 𝑗 ) ) |
| 33 |
|
simprr |
⊢ ( ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ 𝑗 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) → 𝑗 ≤ 𝑁 ) |
| 34 |
33
|
olcd |
⊢ ( ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ 𝑗 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) → ( 𝑗 ≤ 𝑀 ∨ 𝑗 ≤ 𝑁 ) ) |
| 35 |
32 34
|
jca |
⊢ ( ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ 𝑗 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) → ( ( 𝑗 ≤ 𝑀 ∨ 𝑀 ≤ 𝑗 ) ∧ ( 𝑗 ≤ 𝑀 ∨ 𝑗 ≤ 𝑁 ) ) ) |
| 36 |
|
orddi |
⊢ ( ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ↔ ( ( ( 𝐾 ≤ 𝑗 ∨ 𝑀 ≤ 𝑗 ) ∧ ( 𝐾 ≤ 𝑗 ∨ 𝑗 ≤ 𝑁 ) ) ∧ ( ( 𝑗 ≤ 𝑀 ∨ 𝑀 ≤ 𝑗 ) ∧ ( 𝑗 ≤ 𝑀 ∨ 𝑗 ≤ 𝑁 ) ) ) ) |
| 37 |
28 35 36
|
sylanbrc |
⊢ ( ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ 𝑗 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) → ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
| 38 |
37
|
ex |
⊢ ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ 𝑗 ∈ ℝ ) → ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) → ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) |
| 39 |
24 38
|
impbid |
⊢ ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ 𝑗 ∈ ℝ ) → ( ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ↔ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
| 40 |
4 39
|
sylan2 |
⊢ ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ 𝑗 ∈ ℤ ) → ( ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ↔ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
| 41 |
40
|
pm5.32da |
⊢ ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) → ( ( 𝑗 ∈ ℤ ∧ ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) |
| 42 |
1 2 3 41
|
syl3anl |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) → ( ( 𝑗 ∈ ℤ ∧ ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) |
| 43 |
|
simp1 |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝐾 ∈ ℤ ) |
| 44 |
|
simp2 |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑀 ∈ ℤ ) |
| 45 |
|
elfz1 |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑗 ∈ ( 𝐾 ... 𝑀 ) ↔ ( 𝑗 ∈ ℤ ∧ 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ) ) |
| 46 |
43 44 45
|
syl2anc |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑗 ∈ ( 𝐾 ... 𝑀 ) ↔ ( 𝑗 ∈ ℤ ∧ 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ) ) |
| 47 |
|
3anass |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ) ) |
| 48 |
46 47
|
bitrdi |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑗 ∈ ( 𝐾 ... 𝑀 ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ) ) ) |
| 49 |
|
simp3 |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℤ ) |
| 50 |
|
elfz1 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑗 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
| 51 |
44 49 50
|
syl2anc |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑗 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
| 52 |
|
3anass |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
| 53 |
51 52
|
bitrdi |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑗 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) |
| 54 |
48 53
|
orbi12d |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑗 ∈ ( 𝐾 ... 𝑀 ) ∨ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) ↔ ( ( 𝑗 ∈ ℤ ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ) ∨ ( 𝑗 ∈ ℤ ∧ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) ) |
| 55 |
|
elun |
⊢ ( 𝑗 ∈ ( ( 𝐾 ... 𝑀 ) ∪ ( 𝑀 ... 𝑁 ) ) ↔ ( 𝑗 ∈ ( 𝐾 ... 𝑀 ) ∨ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) ) |
| 56 |
|
andi |
⊢ ( ( 𝑗 ∈ ℤ ∧ ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ↔ ( ( 𝑗 ∈ ℤ ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ) ∨ ( 𝑗 ∈ ℤ ∧ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) |
| 57 |
54 55 56
|
3bitr4g |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑗 ∈ ( ( 𝐾 ... 𝑀 ) ∪ ( 𝑀 ... 𝑁 ) ) ↔ ( 𝑗 ∈ ℤ ∧ ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) ) |
| 58 |
57
|
adantr |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) → ( 𝑗 ∈ ( ( 𝐾 ... 𝑀 ) ∪ ( 𝑀 ... 𝑁 ) ) ↔ ( 𝑗 ∈ ℤ ∧ ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) ) |
| 59 |
|
elfz1 |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑗 ∈ ( 𝐾 ... 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
| 60 |
43 49 59
|
syl2anc |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑗 ∈ ( 𝐾 ... 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
| 61 |
|
3anass |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
| 62 |
60 61
|
bitrdi |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑗 ∈ ( 𝐾 ... 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) |
| 63 |
62
|
adantr |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) → ( 𝑗 ∈ ( 𝐾 ... 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) |
| 64 |
42 58 63
|
3bitr4d |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) → ( 𝑗 ∈ ( ( 𝐾 ... 𝑀 ) ∪ ( 𝑀 ... 𝑁 ) ) ↔ 𝑗 ∈ ( 𝐾 ... 𝑁 ) ) ) |
| 65 |
64
|
eqrdv |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) → ( ( 𝐾 ... 𝑀 ) ∪ ( 𝑀 ... 𝑁 ) ) = ( 𝐾 ... 𝑁 ) ) |