Step |
Hyp |
Ref |
Expression |
1 |
|
zre |
⊢ ( 𝐾 ∈ ℤ → 𝐾 ∈ ℝ ) |
2 |
|
zre |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) |
3 |
|
zre |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) |
4 |
|
zre |
⊢ ( 𝑗 ∈ ℤ → 𝑗 ∈ ℝ ) |
5 |
|
simprl |
⊢ ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ ( 𝑗 ∈ ℝ ∧ 𝑗 ≤ 𝑀 ) ) → 𝑗 ∈ ℝ ) |
6 |
|
simpl2 |
⊢ ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) → 𝑀 ∈ ℝ ) |
7 |
6
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ ( 𝑗 ∈ ℝ ∧ 𝑗 ≤ 𝑀 ) ) → 𝑀 ∈ ℝ ) |
8 |
|
simpll3 |
⊢ ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ ( 𝑗 ∈ ℝ ∧ 𝑗 ≤ 𝑀 ) ) → 𝑁 ∈ ℝ ) |
9 |
|
simprr |
⊢ ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ ( 𝑗 ∈ ℝ ∧ 𝑗 ≤ 𝑀 ) ) → 𝑗 ≤ 𝑀 ) |
10 |
|
simprr |
⊢ ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) → 𝑀 ≤ 𝑁 ) |
11 |
10
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ ( 𝑗 ∈ ℝ ∧ 𝑗 ≤ 𝑀 ) ) → 𝑀 ≤ 𝑁 ) |
12 |
5 7 8 9 11
|
letrd |
⊢ ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ ( 𝑗 ∈ ℝ ∧ 𝑗 ≤ 𝑀 ) ) → 𝑗 ≤ 𝑁 ) |
13 |
12
|
expr |
⊢ ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ 𝑗 ∈ ℝ ) → ( 𝑗 ≤ 𝑀 → 𝑗 ≤ 𝑁 ) ) |
14 |
13
|
anim2d |
⊢ ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ 𝑗 ∈ ℝ ) → ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) → ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
15 |
|
simpll1 |
⊢ ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ ( 𝑗 ∈ ℝ ∧ 𝑀 ≤ 𝑗 ) ) → 𝐾 ∈ ℝ ) |
16 |
6
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ ( 𝑗 ∈ ℝ ∧ 𝑀 ≤ 𝑗 ) ) → 𝑀 ∈ ℝ ) |
17 |
|
simprl |
⊢ ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ ( 𝑗 ∈ ℝ ∧ 𝑀 ≤ 𝑗 ) ) → 𝑗 ∈ ℝ ) |
18 |
|
simprl |
⊢ ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) → 𝐾 ≤ 𝑀 ) |
19 |
18
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ ( 𝑗 ∈ ℝ ∧ 𝑀 ≤ 𝑗 ) ) → 𝐾 ≤ 𝑀 ) |
20 |
|
simprr |
⊢ ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ ( 𝑗 ∈ ℝ ∧ 𝑀 ≤ 𝑗 ) ) → 𝑀 ≤ 𝑗 ) |
21 |
15 16 17 19 20
|
letrd |
⊢ ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ ( 𝑗 ∈ ℝ ∧ 𝑀 ≤ 𝑗 ) ) → 𝐾 ≤ 𝑗 ) |
22 |
21
|
expr |
⊢ ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ 𝑗 ∈ ℝ ) → ( 𝑀 ≤ 𝑗 → 𝐾 ≤ 𝑗 ) ) |
23 |
22
|
anim1d |
⊢ ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ 𝑗 ∈ ℝ ) → ( ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) → ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
24 |
14 23
|
jaod |
⊢ ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ 𝑗 ∈ ℝ ) → ( ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) → ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
25 |
|
orc |
⊢ ( 𝐾 ≤ 𝑗 → ( 𝐾 ≤ 𝑗 ∨ 𝑀 ≤ 𝑗 ) ) |
26 |
|
orc |
⊢ ( 𝐾 ≤ 𝑗 → ( 𝐾 ≤ 𝑗 ∨ 𝑗 ≤ 𝑁 ) ) |
27 |
25 26
|
jca |
⊢ ( 𝐾 ≤ 𝑗 → ( ( 𝐾 ≤ 𝑗 ∨ 𝑀 ≤ 𝑗 ) ∧ ( 𝐾 ≤ 𝑗 ∨ 𝑗 ≤ 𝑁 ) ) ) |
28 |
27
|
ad2antrl |
⊢ ( ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ 𝑗 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) → ( ( 𝐾 ≤ 𝑗 ∨ 𝑀 ≤ 𝑗 ) ∧ ( 𝐾 ≤ 𝑗 ∨ 𝑗 ≤ 𝑁 ) ) ) |
29 |
|
letric |
⊢ ( ( 𝑗 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( 𝑗 ≤ 𝑀 ∨ 𝑀 ≤ 𝑗 ) ) |
30 |
29
|
ancoms |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑗 ∈ ℝ ) → ( 𝑗 ≤ 𝑀 ∨ 𝑀 ≤ 𝑗 ) ) |
31 |
6 30
|
sylan |
⊢ ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ 𝑗 ∈ ℝ ) → ( 𝑗 ≤ 𝑀 ∨ 𝑀 ≤ 𝑗 ) ) |
32 |
31
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ 𝑗 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) → ( 𝑗 ≤ 𝑀 ∨ 𝑀 ≤ 𝑗 ) ) |
33 |
|
simprr |
⊢ ( ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ 𝑗 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) → 𝑗 ≤ 𝑁 ) |
34 |
33
|
olcd |
⊢ ( ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ 𝑗 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) → ( 𝑗 ≤ 𝑀 ∨ 𝑗 ≤ 𝑁 ) ) |
35 |
32 34
|
jca |
⊢ ( ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ 𝑗 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) → ( ( 𝑗 ≤ 𝑀 ∨ 𝑀 ≤ 𝑗 ) ∧ ( 𝑗 ≤ 𝑀 ∨ 𝑗 ≤ 𝑁 ) ) ) |
36 |
|
orddi |
⊢ ( ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ↔ ( ( ( 𝐾 ≤ 𝑗 ∨ 𝑀 ≤ 𝑗 ) ∧ ( 𝐾 ≤ 𝑗 ∨ 𝑗 ≤ 𝑁 ) ) ∧ ( ( 𝑗 ≤ 𝑀 ∨ 𝑀 ≤ 𝑗 ) ∧ ( 𝑗 ≤ 𝑀 ∨ 𝑗 ≤ 𝑁 ) ) ) ) |
37 |
28 35 36
|
sylanbrc |
⊢ ( ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ 𝑗 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) → ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
38 |
37
|
ex |
⊢ ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ 𝑗 ∈ ℝ ) → ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) → ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) |
39 |
24 38
|
impbid |
⊢ ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ 𝑗 ∈ ℝ ) → ( ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ↔ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
40 |
4 39
|
sylan2 |
⊢ ( ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ∧ 𝑗 ∈ ℤ ) → ( ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ↔ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
41 |
40
|
pm5.32da |
⊢ ( ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) → ( ( 𝑗 ∈ ℤ ∧ ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) |
42 |
1 2 3 41
|
syl3anl |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) → ( ( 𝑗 ∈ ℤ ∧ ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) |
43 |
|
simp1 |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝐾 ∈ ℤ ) |
44 |
|
simp2 |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑀 ∈ ℤ ) |
45 |
|
elfz1 |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑗 ∈ ( 𝐾 ... 𝑀 ) ↔ ( 𝑗 ∈ ℤ ∧ 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ) ) |
46 |
43 44 45
|
syl2anc |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑗 ∈ ( 𝐾 ... 𝑀 ) ↔ ( 𝑗 ∈ ℤ ∧ 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ) ) |
47 |
|
3anass |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ) ) |
48 |
46 47
|
bitrdi |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑗 ∈ ( 𝐾 ... 𝑀 ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ) ) ) |
49 |
|
simp3 |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℤ ) |
50 |
|
elfz1 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑗 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
51 |
44 49 50
|
syl2anc |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑗 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
52 |
|
3anass |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
53 |
51 52
|
bitrdi |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑗 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) |
54 |
48 53
|
orbi12d |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑗 ∈ ( 𝐾 ... 𝑀 ) ∨ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) ↔ ( ( 𝑗 ∈ ℤ ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ) ∨ ( 𝑗 ∈ ℤ ∧ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) ) |
55 |
|
elun |
⊢ ( 𝑗 ∈ ( ( 𝐾 ... 𝑀 ) ∪ ( 𝑀 ... 𝑁 ) ) ↔ ( 𝑗 ∈ ( 𝐾 ... 𝑀 ) ∨ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) ) |
56 |
|
andi |
⊢ ( ( 𝑗 ∈ ℤ ∧ ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ↔ ( ( 𝑗 ∈ ℤ ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ) ∨ ( 𝑗 ∈ ℤ ∧ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) |
57 |
54 55 56
|
3bitr4g |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑗 ∈ ( ( 𝐾 ... 𝑀 ) ∪ ( 𝑀 ... 𝑁 ) ) ↔ ( 𝑗 ∈ ℤ ∧ ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) ) |
58 |
57
|
adantr |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) → ( 𝑗 ∈ ( ( 𝐾 ... 𝑀 ) ∪ ( 𝑀 ... 𝑁 ) ) ↔ ( 𝑗 ∈ ℤ ∧ ( ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑀 ) ∨ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) ) |
59 |
|
elfz1 |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑗 ∈ ( 𝐾 ... 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
60 |
43 49 59
|
syl2anc |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑗 ∈ ( 𝐾 ... 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
61 |
|
3anass |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) |
62 |
60 61
|
bitrdi |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑗 ∈ ( 𝐾 ... 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) |
63 |
62
|
adantr |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) → ( 𝑗 ∈ ( 𝐾 ... 𝑁 ) ↔ ( 𝑗 ∈ ℤ ∧ ( 𝐾 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ) ) ) |
64 |
42 58 63
|
3bitr4d |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) → ( 𝑗 ∈ ( ( 𝐾 ... 𝑀 ) ∪ ( 𝑀 ... 𝑁 ) ) ↔ 𝑗 ∈ ( 𝐾 ... 𝑁 ) ) ) |
65 |
64
|
eqrdv |
⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) → ( ( 𝐾 ... 𝑀 ) ∪ ( 𝑀 ... 𝑁 ) ) = ( 𝐾 ... 𝑁 ) ) |