Metamath Proof Explorer


Theorem gcd0id

Description: The gcd of 0 and an integer is the integer's absolute value. (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Assertion gcd0id N0gcdN=N

Proof

Step Hyp Ref Expression
1 gcd0val 0gcd0=0
2 oveq2 N=00gcdN=0gcd0
3 fveq2 N=0N=0
4 abs0 0=0
5 3 4 eqtrdi N=0N=0
6 1 2 5 3eqtr4a N=00gcdN=N
7 6 adantl NN=00gcdN=N
8 0z 0
9 gcddvds 0N0gcdN00gcdNN
10 8 9 mpan N0gcdN00gcdNN
11 10 simprd N0gcdNN
12 11 adantr NN00gcdNN
13 gcdcl 0N0gcdN0
14 8 13 mpan N0gcdN0
15 14 nn0zd N0gcdN
16 dvdsleabs 0gcdNNN00gcdNN0gcdNN
17 15 16 syl3an1 NNN00gcdNN0gcdNN
18 17 3anidm12 NN00gcdNN0gcdNN
19 12 18 mpd NN00gcdNN
20 zabscl NN
21 dvds0 NN0
22 20 21 syl NN0
23 iddvds NNN
24 absdvdsb NNNNNN
25 24 anidms NNNNN
26 23 25 mpbid NNN
27 22 26 jca NN0NN
28 27 adantr NN0N0NN
29 eqid 0=0
30 29 biantrur N=00=0N=0
31 30 necon3abii N0¬0=0N=0
32 dvdslegcd N0N¬0=0N=0N0NNN0gcdN
33 32 ex N0N¬0=0N=0N0NNN0gcdN
34 8 33 mp3an2 NN¬0=0N=0N0NNN0gcdN
35 20 34 mpancom N¬0=0N=0N0NNN0gcdN
36 31 35 biimtrid NN0N0NNN0gcdN
37 36 imp NN0N0NNN0gcdN
38 28 37 mpd NN0N0gcdN
39 15 zred N0gcdN
40 20 zred NN
41 39 40 letri3d N0gcdN=N0gcdNNN0gcdN
42 41 adantr NN00gcdN=N0gcdNNN0gcdN
43 19 38 42 mpbir2and NN00gcdN=N
44 7 43 pm2.61dane N0gcdN=N