Metamath Proof Explorer


Theorem gcdmultiplezOLD

Description: Obsolete proof of gcdmultiplez as of 12-Jan-2024. Extend gcdmultiple so N can be an integer. (Contributed by Scott Fenton, 18-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion gcdmultiplezOLD M N M gcd M N = M

Proof

Step Hyp Ref Expression
1 oveq2 N = 0 M N = M 0
2 1 oveq2d N = 0 M gcd M N = M gcd M 0
3 2 eqeq1d N = 0 M gcd M N = M M gcd M 0 = M
4 nncn M M
5 zcn N N
6 absmul M N M N = M N
7 4 5 6 syl2an M N M N = M N
8 nnre M M
9 nnnn0 M M 0
10 9 nn0ge0d M 0 M
11 8 10 absidd M M = M
12 11 oveq1d M M N = M N
13 12 adantr M N M N = M N
14 7 13 eqtrd M N M N = M N
15 14 oveq2d M N M gcd M N = M gcd M N
16 15 adantr M N N 0 M gcd M N = M gcd M N
17 simpll M N N 0 M
18 17 nnzd M N N 0 M
19 nnz M M
20 zmulcl M N M N
21 19 20 sylan M N M N
22 21 adantr M N N 0 M N
23 gcdabs2 M M N M gcd M N = M gcd M N
24 18 22 23 syl2anc M N N 0 M gcd M N = M gcd M N
25 nnabscl N N 0 N
26 gcdmultiple M N M gcd M N = M
27 25 26 sylan2 M N N 0 M gcd M N = M
28 27 anassrs M N N 0 M gcd M N = M
29 16 24 28 3eqtr3d M N N 0 M gcd M N = M
30 mul01 M M 0 = 0
31 30 oveq2d M M gcd M 0 = M gcd 0
32 4 31 syl M M gcd M 0 = M gcd 0
33 32 adantr M N M gcd M 0 = M gcd 0
34 nn0gcdid0 M 0 M gcd 0 = M
35 9 34 syl M M gcd 0 = M
36 35 adantr M N M gcd 0 = M
37 33 36 eqtrd M N M gcd M 0 = M
38 3 29 37 pm2.61ne M N M gcd M N = M