Metamath Proof Explorer


Theorem geoisumr

Description: The infinite sum of reciprocals 1 + ( 1 / A ) ^ 1 + ( 1 / A ) ^ 2 ... is A / ( A - 1 ) . (Contributed by rpenner, 3-Nov-2007) (Revised by Mario Carneiro, 26-Apr-2014)

Ref Expression
Assertion geoisumr A1<Ak01Ak=AA1

Proof

Step Hyp Ref Expression
1 nn0uz 0=0
2 0zd A1<A0
3 oveq2 n=k1An=1Ak
4 eqid n01An=n01An
5 ovex 1AkV
6 3 4 5 fvmpt k0n01Ank=1Ak
7 6 adantl A1<Ak0n01Ank=1Ak
8 0le1 01
9 0re 0
10 1re 1
11 9 10 lenlti 01¬1<0
12 8 11 mpbi ¬1<0
13 fveq2 A=0A=0
14 abs0 0=0
15 13 14 eqtrdi A=0A=0
16 15 breq2d A=01<A1<0
17 12 16 mtbiri A=0¬1<A
18 17 necon2ai 1<AA0
19 reccl AA01A
20 18 19 sylan2 A1<A1A
21 expcl 1Ak01Ak
22 20 21 sylan A1<Ak01Ak
23 simpl A1<AA
24 simpr A1<A1<A
25 23 24 7 georeclim A1<Aseq0+n01AnAA1
26 1 2 7 22 25 isumclim A1<Ak01Ak=AA1