Description: The infinite sum of reciprocals 1 + ( 1 / A ) ^ 1 + ( 1 / A ) ^ 2 ... is A / ( A - 1 ) . (Contributed by rpenner, 3-Nov-2007) (Revised by Mario Carneiro, 26-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | geoisumr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0uz | |
|
2 | 0zd | |
|
3 | oveq2 | |
|
4 | eqid | |
|
5 | ovex | |
|
6 | 3 4 5 | fvmpt | |
7 | 6 | adantl | |
8 | 0le1 | |
|
9 | 0re | |
|
10 | 1re | |
|
11 | 9 10 | lenlti | |
12 | 8 11 | mpbi | |
13 | fveq2 | |
|
14 | abs0 | |
|
15 | 13 14 | eqtrdi | |
16 | 15 | breq2d | |
17 | 12 16 | mtbiri | |
18 | 17 | necon2ai | |
19 | reccl | |
|
20 | 18 19 | sylan2 | |
21 | expcl | |
|
22 | 20 21 | sylan | |
23 | simpl | |
|
24 | simpr | |
|
25 | 23 24 7 | georeclim | |
26 | 1 2 7 22 25 | isumclim | |