Metamath Proof Explorer


Theorem gexcl2

Description: The exponent of a finite group is finite. (Contributed by Mario Carneiro, 24-Apr-2016)

Ref Expression
Hypotheses gexcl2.1 X=BaseG
gexcl2.2 E=gExG
Assertion gexcl2 GGrpXFinE

Proof

Step Hyp Ref Expression
1 gexcl2.1 X=BaseG
2 gexcl2.2 E=gExG
3 eqid odG=odG
4 1 3 odcl2 GGrpXFinxXodGx
5 1 3 oddvds2 GGrpXFinxXodGxX
6 4 nnzd GGrpXFinxXodGx
7 1 grpbn0 GGrpX
8 7 3ad2ant1 GGrpXFinxXX
9 hashnncl XFinXX
10 9 3ad2ant2 GGrpXFinxXXX
11 8 10 mpbird GGrpXFinxXX
12 dvdsle odGxXodGxXodGxX
13 6 11 12 syl2anc GGrpXFinxXodGxXodGxX
14 5 13 mpd GGrpXFinxXodGxX
15 11 nnzd GGrpXFinxXX
16 fznn XodGx1XodGxodGxX
17 15 16 syl GGrpXFinxXodGx1XodGxodGxX
18 4 14 17 mpbir2and GGrpXFinxXodGx1X
19 18 3expa GGrpXFinxXodGx1X
20 19 ralrimiva GGrpXFinxXodGx1X
21 1 2 3 gexcl3 GGrpxXodGx1XE
22 20 21 syldan GGrpXFinE