Description: The exponent of a finite group is finite. (Contributed by Mario Carneiro, 24-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gexcl2.1 | |
|
gexcl2.2 | |
||
Assertion | gexcl2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gexcl2.1 | |
|
2 | gexcl2.2 | |
|
3 | eqid | |
|
4 | 1 3 | odcl2 | |
5 | 1 3 | oddvds2 | |
6 | 4 | nnzd | |
7 | 1 | grpbn0 | |
8 | 7 | 3ad2ant1 | |
9 | hashnncl | |
|
10 | 9 | 3ad2ant2 | |
11 | 8 10 | mpbird | |
12 | dvdsle | |
|
13 | 6 11 12 | syl2anc | |
14 | 5 13 | mpd | |
15 | 11 | nnzd | |
16 | fznn | |
|
17 | 15 16 | syl | |
18 | 4 14 17 | mpbir2and | |
19 | 18 | 3expa | |
20 | 19 | ralrimiva | |
21 | 1 2 3 | gexcl3 | |
22 | 20 21 | syldan | |