| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lubsscl.k |
|
| 2 |
|
lubsscl.t |
|
| 3 |
|
glbsscl.g |
|
| 4 |
|
glbsscl.s |
|
| 5 |
|
glbsscl.x |
|
| 6 |
|
eqid |
|
| 7 |
|
eqid |
|
| 8 |
6 7 3 1 4
|
glbelss |
|
| 9 |
2 8
|
sstrd |
|
| 10 |
9 5
|
sseldd |
|
| 11 |
1
|
adantr |
|
| 12 |
4
|
adantr |
|
| 13 |
2
|
sselda |
|
| 14 |
6 7 3 11 12 13
|
glble |
|
| 15 |
14
|
ralrimiva |
|
| 16 |
|
breq2 |
|
| 17 |
|
simp3 |
|
| 18 |
5
|
3ad2ant1 |
|
| 19 |
16 17 18
|
rspcdva |
|
| 20 |
19
|
3expia |
|
| 21 |
20
|
ralrimiva |
|
| 22 |
|
breq1 |
|
| 23 |
22
|
ralbidv |
|
| 24 |
|
breq2 |
|
| 25 |
24
|
imbi2d |
|
| 26 |
25
|
ralbidv |
|
| 27 |
23 26
|
anbi12d |
|
| 28 |
27
|
rspcev |
|
| 29 |
10 15 21 28
|
syl12anc |
|
| 30 |
|
biid |
|
| 31 |
6 7 3 30 1
|
glbeldm2 |
|
| 32 |
9 29 31
|
mpbir2and |
|
| 33 |
|
eqidd |
|
| 34 |
3
|
a1i |
|
| 35 |
7 33 34 1 9 10 14 19
|
posglbdg |
|
| 36 |
32 35
|
jca |
|