Description: Lemma for lubprdm and lubpr . (Contributed by Zhi Wang, 26-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lubpr.k | |
|
lubpr.b | |
||
lubpr.x | |
||
lubpr.y | |
||
lubpr.l | |
||
lubpr.c | |
||
lubpr.s | |
||
lubpr.u | |
||
Assertion | lubprlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lubpr.k | |
|
2 | lubpr.b | |
|
3 | lubpr.x | |
|
4 | lubpr.y | |
|
5 | lubpr.l | |
|
6 | lubpr.c | |
|
7 | lubpr.s | |
|
8 | lubpr.u | |
|
9 | breq1 | |
|
10 | 9 3 6 | elrabd | |
11 | breq1 | |
|
12 | 2 5 | posref | |
13 | 1 4 12 | syl2anc | |
14 | 11 4 13 | elrabd | |
15 | 10 14 | prssd | |
16 | 2 5 8 1 4 | lublecl | |
17 | 2 5 8 1 4 | lubid | |
18 | prid2g | |
|
19 | 4 18 | syl | |
20 | 17 19 | eqeltrd | |
21 | 1 15 8 16 20 | lubsscl | |
22 | 21 | simpld | |
23 | 7 22 | eqeltrd | |
24 | 7 | fveq2d | |
25 | 21 | simprd | |
26 | 24 25 17 | 3eqtrd | |
27 | 23 26 | jca | |