Metamath Proof Explorer


Theorem glbval

Description: Value of the greatest lower bound function of a poset. Out-of-domain arguments (those not satisfying S e. dom U ) are allowed for convenience, evaluating to the empty set on both sides of the equality. (Contributed by NM, 12-Sep-2011) (Revised by NM, 9-Sep-2018)

Ref Expression
Hypotheses glbval.b B=BaseK
glbval.l ˙=K
glbval.g G=glbK
glbval.p ψySx˙yzBySz˙yz˙x
glbva.k φKV
glbval.ss φSB
Assertion glbval φGS=ιxB|ψ

Proof

Step Hyp Ref Expression
1 glbval.b B=BaseK
2 glbval.l ˙=K
3 glbval.g G=glbK
4 glbval.p ψySx˙yzBySz˙yz˙x
5 glbva.k φKV
6 glbval.ss φSB
7 biid ysx˙yzBysz˙yz˙xysx˙yzBysz˙yz˙x
8 5 adantr φSdomGKV
9 1 2 3 7 8 glbfval φSdomGG=s𝒫BιxB|ysx˙yzBysz˙yz˙xs|∃!xBysx˙yzBysz˙yz˙x
10 9 fveq1d φSdomGGS=s𝒫BιxB|ysx˙yzBysz˙yz˙xs|∃!xBysx˙yzBysz˙yz˙xS
11 simpr φSdomGSdomG
12 1 2 3 4 8 11 glbeu φSdomG∃!xBψ
13 raleq s=Sysx˙yySx˙y
14 raleq s=Sysz˙yySz˙y
15 14 imbi1d s=Sysz˙yz˙xySz˙yz˙x
16 15 ralbidv s=SzBysz˙yz˙xzBySz˙yz˙x
17 13 16 anbi12d s=Sysx˙yzBysz˙yz˙xySx˙yzBySz˙yz˙x
18 17 4 bitr4di s=Sysx˙yzBysz˙yz˙xψ
19 18 reubidv s=S∃!xBysx˙yzBysz˙yz˙x∃!xBψ
20 11 12 19 elabd φSdomGSs|∃!xBysx˙yzBysz˙yz˙x
21 20 fvresd φSdomGs𝒫BιxB|ysx˙yzBysz˙yz˙xs|∃!xBysx˙yzBysz˙yz˙xS=s𝒫BιxB|ysx˙yzBysz˙yz˙xS
22 6 adantr φSdomGSB
23 1 fvexi BV
24 23 elpw2 S𝒫BSB
25 22 24 sylibr φSdomGS𝒫B
26 18 riotabidv s=SιxB|ysx˙yzBysz˙yz˙x=ιxB|ψ
27 eqid s𝒫BιxB|ysx˙yzBysz˙yz˙x=s𝒫BιxB|ysx˙yzBysz˙yz˙x
28 riotaex ιxB|ψV
29 26 27 28 fvmpt S𝒫Bs𝒫BιxB|ysx˙yzBysz˙yz˙xS=ιxB|ψ
30 25 29 syl φSdomGs𝒫BιxB|ysx˙yzBysz˙yz˙xS=ιxB|ψ
31 10 21 30 3eqtrd φSdomGGS=ιxB|ψ
32 ndmfv ¬SdomGGS=
33 32 adantl φ¬SdomGGS=
34 1 2 3 4 5 glbeldm φSdomGSB∃!xBψ
35 34 biimprd φSB∃!xBψSdomG
36 6 35 mpand φ∃!xBψSdomG
37 36 con3dimp φ¬SdomG¬∃!xBψ
38 riotaund ¬∃!xBψιxB|ψ=
39 37 38 syl φ¬SdomGιxB|ψ=
40 33 39 eqtr4d φ¬SdomGGS=ιxB|ψ
41 31 40 pm2.61dan φGS=ιxB|ψ