Metamath Proof Explorer


Theorem gpg3kgrtriexlem4

Description: Lemma 4 for gpg3kgrtriex . (Contributed by AV, 1-Oct-2025)

Ref Expression
Hypothesis gpg3kgrtriex.n N = 3 K
Assertion gpg3kgrtriexlem4 K K 1 ..^ N 2

Proof

Step Hyp Ref Expression
1 gpg3kgrtriex.n N = 3 K
2 id K K
3 1 oveq1i N 2 = 3 K 2
4 3re 3
5 4 a1i K 3
6 nnre K K
7 5 6 remulcld K 3 K
8 7 rehalfcld K 3 K 2
9 3 8 eqeltrid K N 2
10 9 ceilcld K N 2
11 1red K 1
12 1 7 eqeltrid K N
13 12 rehalfcld K N 2
14 13 ceilcld K N 2
15 14 zred K N 2
16 nnge1 K 1 K
17 8 ceilcld K 3 K 2
18 17 zred K 3 K 2
19 gpg3kgrtriexlem1 K K < 3 K 2
20 6 18 19 ltled K K 3 K 2
21 3 fveq2i N 2 = 3 K 2
22 20 21 breqtrrdi K K N 2
23 11 6 15 16 22 letrd K 1 N 2
24 elnnz1 N 2 N 2 1 N 2
25 10 23 24 sylanbrc K N 2
26 19 21 breqtrrdi K K < N 2
27 elfzo1 K 1 ..^ N 2 K N 2 K < N 2
28 2 25 26 27 syl3anbrc K K 1 ..^ N 2