Metamath Proof Explorer


Theorem gpgprismgr4cycllem11

Description: Lemma 11 for gpgprismgr4cycl0 . (Contributed by AV, 5-Nov-2025)

Ref Expression
Hypotheses gpgprismgr4cycl.p P = ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩
gpgprismgr4cycl.f F = ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩
gpgprismgr4cycl.g No typesetting found for |- G = ( N gPetersenGr 1 ) with typecode |-
Assertion gpgprismgr4cycllem11 N 3 F Cycles G P

Proof

Step Hyp Ref Expression
1 gpgprismgr4cycl.p P = ⟨“ 0 0 0 1 1 1 1 0 0 0 ”⟩
2 gpgprismgr4cycl.f F = ⟨“ 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 ”⟩
3 gpgprismgr4cycl.g Could not format G = ( N gPetersenGr 1 ) : No typesetting found for |- G = ( N gPetersenGr 1 ) with typecode |-
4 1 gpgprismgr4cycllem5 P Word V
5 4 a1i N 3 P Word V
6 1 gpgprismgr4cycllem4 P = 5
7 6 oveq1i P 1 = 5 1
8 5m1e4 5 1 = 4
9 7 8 eqtri P 1 = 4
10 9 eqcomi 4 = P 1
11 1 gpgprismgr4cycllem7 x 0 ..^ P y 1 ..^ 4 x y P x P y
12 11 adantl N 3 x 0 ..^ P y 1 ..^ 4 x y P x P y
13 12 ralrimivva N 3 x 0 ..^ P y 1 ..^ 4 x y P x P y
14 2 gpgprismgr4cycllem1 F = 4
15 1 2 3 gpgprismgr4cycllem8 N 3 F Word dom iEdg G
16 1 2 3 gpgprismgr4cycllem9 N 3 P : 0 F Vtx G
17 1 2 3 gpgprismgr4cycllem10 N 3 x 0 ..^ F iEdg G F x = P x P x + 1
18 17 ralrimiva N 3 x 0 ..^ F iEdg G F x = P x P x + 1
19 gpgprismgrusgra Could not format ( N e. ( ZZ>= ` 3 ) -> ( N gPetersenGr 1 ) e. USGraph ) : No typesetting found for |- ( N e. ( ZZ>= ` 3 ) -> ( N gPetersenGr 1 ) e. USGraph ) with typecode |-
20 3 eleq1i Could not format ( G e. USGraph <-> ( N gPetersenGr 1 ) e. USGraph ) : No typesetting found for |- ( G e. USGraph <-> ( N gPetersenGr 1 ) e. USGraph ) with typecode |-
21 usgrupgr G USGraph G UPGraph
22 20 21 sylbir Could not format ( ( N gPetersenGr 1 ) e. USGraph -> G e. UPGraph ) : No typesetting found for |- ( ( N gPetersenGr 1 ) e. USGraph -> G e. UPGraph ) with typecode |-
23 eqid Vtx G = Vtx G
24 eqid iEdg G = iEdg G
25 23 24 upgriswlk G UPGraph F Walks G P F Word dom iEdg G P : 0 F Vtx G x 0 ..^ F iEdg G F x = P x P x + 1
26 19 22 25 3syl N 3 F Walks G P F Word dom iEdg G P : 0 F Vtx G x 0 ..^ F iEdg G F x = P x P x + 1
27 15 16 18 26 mpbir3and N 3 F Walks G P
28 2 gpgprismgr4cycllem2 Fun F -1
29 istrl F Trails G P F Walks G P Fun F -1
30 27 28 29 sylanblrc N 3 F Trails G P
31 5 10 13 14 30 pthd N 3 F Paths G P
32 1 gpgprismgr4cycllem6 P 0 = P 4
33 14 eqcomi 4 = F
34 33 fveq2i P 4 = P F
35 32 34 eqtri P 0 = P F
36 iscycl F Cycles G P F Paths G P P 0 = P F
37 31 35 36 sylanblrc N 3 F Cycles G P