Metamath Proof Explorer


Theorem grpoinvid2

Description: The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 27-Oct-2006) (New usage is discouraged.)

Ref Expression
Hypotheses grpinv.1 X=ranG
grpinv.2 U=GIdG
grpinv.3 N=invG
Assertion grpoinvid2 GGrpOpAXBXNA=BBGA=U

Proof

Step Hyp Ref Expression
1 grpinv.1 X=ranG
2 grpinv.2 U=GIdG
3 grpinv.3 N=invG
4 oveq1 NA=BNAGA=BGA
5 4 adantl GGrpOpAXBXNA=BNAGA=BGA
6 1 2 3 grpolinv GGrpOpAXNAGA=U
7 6 3adant3 GGrpOpAXBXNAGA=U
8 7 adantr GGrpOpAXBXNA=BNAGA=U
9 5 8 eqtr3d GGrpOpAXBXNA=BBGA=U
10 1 3 grpoinvcl GGrpOpAXNAX
11 1 2 grpolid GGrpOpNAXUGNA=NA
12 10 11 syldan GGrpOpAXUGNA=NA
13 12 3adant3 GGrpOpAXBXUGNA=NA
14 13 eqcomd GGrpOpAXBXNA=UGNA
15 14 adantr GGrpOpAXBXBGA=UNA=UGNA
16 oveq1 BGA=UBGAGNA=UGNA
17 16 adantl GGrpOpAXBXBGA=UBGAGNA=UGNA
18 simprr GGrpOpAXBXBX
19 simprl GGrpOpAXBXAX
20 10 adantrr GGrpOpAXBXNAX
21 18 19 20 3jca GGrpOpAXBXBXAXNAX
22 1 grpoass GGrpOpBXAXNAXBGAGNA=BGAGNA
23 21 22 syldan GGrpOpAXBXBGAGNA=BGAGNA
24 23 3impb GGrpOpAXBXBGAGNA=BGAGNA
25 1 2 3 grporinv GGrpOpAXAGNA=U
26 25 oveq2d GGrpOpAXBGAGNA=BGU
27 26 3adant3 GGrpOpAXBXBGAGNA=BGU
28 1 2 grporid GGrpOpBXBGU=B
29 28 3adant2 GGrpOpAXBXBGU=B
30 24 27 29 3eqtrd GGrpOpAXBXBGAGNA=B
31 30 adantr GGrpOpAXBXBGA=UBGAGNA=B
32 15 17 31 3eqtr2d GGrpOpAXBXBGA=UNA=B
33 9 32 impbida GGrpOpAXBXNA=BBGA=U