Description: The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 27-Oct-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | grpinv.1 | |
|
grpinv.2 | |
||
grpinv.3 | |
||
Assertion | grpoinvid2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinv.1 | |
|
2 | grpinv.2 | |
|
3 | grpinv.3 | |
|
4 | oveq1 | |
|
5 | 4 | adantl | |
6 | 1 2 3 | grpolinv | |
7 | 6 | 3adant3 | |
8 | 7 | adantr | |
9 | 5 8 | eqtr3d | |
10 | 1 3 | grpoinvcl | |
11 | 1 2 | grpolid | |
12 | 10 11 | syldan | |
13 | 12 | 3adant3 | |
14 | 13 | eqcomd | |
15 | 14 | adantr | |
16 | oveq1 | |
|
17 | 16 | adantl | |
18 | simprr | |
|
19 | simprl | |
|
20 | 10 | adantrr | |
21 | 18 19 20 | 3jca | |
22 | 1 | grpoass | |
23 | 21 22 | syldan | |
24 | 23 | 3impb | |
25 | 1 2 3 | grporinv | |
26 | 25 | oveq2d | |
27 | 26 | 3adant3 | |
28 | 1 2 | grporid | |
29 | 28 | 3adant2 | |
30 | 24 27 29 | 3eqtrd | |
31 | 30 | adantr | |
32 | 15 17 31 | 3eqtr2d | |
33 | 9 32 | impbida | |