Description: If two structures have the same group components (properties), one is a group iff the other one is. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 2-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | grppropd.1 | |
|
grppropd.2 | |
||
grppropd.3 | |
||
Assertion | grppropd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grppropd.1 | |
|
2 | grppropd.2 | |
|
3 | grppropd.3 | |
|
4 | 1 2 3 | mndpropd | |
5 | 1 2 3 | grpidpropd | |
6 | 5 | adantr | |
7 | 3 6 | eqeq12d | |
8 | 7 | anass1rs | |
9 | 8 | rexbidva | |
10 | 9 | ralbidva | |
11 | 1 | rexeqdv | |
12 | 1 11 | raleqbidv | |
13 | 2 | rexeqdv | |
14 | 2 13 | raleqbidv | |
15 | 10 12 14 | 3bitr3d | |
16 | 4 15 | anbi12d | |
17 | eqid | |
|
18 | eqid | |
|
19 | eqid | |
|
20 | 17 18 19 | isgrp | |
21 | eqid | |
|
22 | eqid | |
|
23 | eqid | |
|
24 | 21 22 23 | isgrp | |
25 | 16 20 24 | 3bitr4g | |