Metamath Proof Explorer


Theorem grppropd

Description: If two structures have the same group components (properties), one is a group iff the other one is. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses grppropd.1 φ B = Base K
grppropd.2 φ B = Base L
grppropd.3 φ x B y B x + K y = x + L y
Assertion grppropd φ K Grp L Grp

Proof

Step Hyp Ref Expression
1 grppropd.1 φ B = Base K
2 grppropd.2 φ B = Base L
3 grppropd.3 φ x B y B x + K y = x + L y
4 1 2 3 mndpropd φ K Mnd L Mnd
5 1 2 3 grpidpropd φ 0 K = 0 L
6 5 adantr φ x B y B 0 K = 0 L
7 3 6 eqeq12d φ x B y B x + K y = 0 K x + L y = 0 L
8 7 anass1rs φ y B x B x + K y = 0 K x + L y = 0 L
9 8 rexbidva φ y B x B x + K y = 0 K x B x + L y = 0 L
10 9 ralbidva φ y B x B x + K y = 0 K y B x B x + L y = 0 L
11 1 rexeqdv φ x B x + K y = 0 K x Base K x + K y = 0 K
12 1 11 raleqbidv φ y B x B x + K y = 0 K y Base K x Base K x + K y = 0 K
13 2 rexeqdv φ x B x + L y = 0 L x Base L x + L y = 0 L
14 2 13 raleqbidv φ y B x B x + L y = 0 L y Base L x Base L x + L y = 0 L
15 10 12 14 3bitr3d φ y Base K x Base K x + K y = 0 K y Base L x Base L x + L y = 0 L
16 4 15 anbi12d φ K Mnd y Base K x Base K x + K y = 0 K L Mnd y Base L x Base L x + L y = 0 L
17 eqid Base K = Base K
18 eqid + K = + K
19 eqid 0 K = 0 K
20 17 18 19 isgrp K Grp K Mnd y Base K x Base K x + K y = 0 K
21 eqid Base L = Base L
22 eqid + L = + L
23 eqid 0 L = 0 L
24 21 22 23 isgrp L Grp L Mnd y Base L x Base L x + L y = 0 L
25 16 20 24 3bitr4g φ K Grp L Grp