Metamath Proof Explorer


Theorem grppropd

Description: If two structures have the same group components (properties), one is a group iff the other one is. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses grppropd.1 φB=BaseK
grppropd.2 φB=BaseL
grppropd.3 φxByBx+Ky=x+Ly
Assertion grppropd φKGrpLGrp

Proof

Step Hyp Ref Expression
1 grppropd.1 φB=BaseK
2 grppropd.2 φB=BaseL
3 grppropd.3 φxByBx+Ky=x+Ly
4 1 2 3 mndpropd φKMndLMnd
5 1 2 3 grpidpropd φ0K=0L
6 5 adantr φxByB0K=0L
7 3 6 eqeq12d φxByBx+Ky=0Kx+Ly=0L
8 7 anass1rs φyBxBx+Ky=0Kx+Ly=0L
9 8 rexbidva φyBxBx+Ky=0KxBx+Ly=0L
10 9 ralbidva φyBxBx+Ky=0KyBxBx+Ly=0L
11 1 rexeqdv φxBx+Ky=0KxBaseKx+Ky=0K
12 1 11 raleqbidv φyBxBx+Ky=0KyBaseKxBaseKx+Ky=0K
13 2 rexeqdv φxBx+Ly=0LxBaseLx+Ly=0L
14 2 13 raleqbidv φyBxBx+Ly=0LyBaseLxBaseLx+Ly=0L
15 10 12 14 3bitr3d φyBaseKxBaseKx+Ky=0KyBaseLxBaseLx+Ly=0L
16 4 15 anbi12d φKMndyBaseKxBaseKx+Ky=0KLMndyBaseLxBaseLx+Ly=0L
17 eqid BaseK=BaseK
18 eqid +K=+K
19 eqid 0K=0K
20 17 18 19 isgrp KGrpKMndyBaseKxBaseKx+Ky=0K
21 eqid BaseL=BaseL
22 eqid +L=+L
23 eqid 0L=0L
24 21 22 23 isgrp LGrpLMndyBaseLxBaseLx+Ly=0L
25 16 20 24 3bitr4g φKGrpLGrp