Metamath Proof Explorer


Theorem gsumadd

Description: The sum of two group sums. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by Mario Carneiro, 25-Apr-2016) (Revised by AV, 5-Jun-2019)

Ref Expression
Hypotheses gsumadd.b B=BaseG
gsumadd.z 0˙=0G
gsumadd.p +˙=+G
gsumadd.g φGCMnd
gsumadd.a φAV
gsumadd.f φF:AB
gsumadd.h φH:AB
gsumadd.fn φfinSupp0˙F
gsumadd.hn φfinSupp0˙H
Assertion gsumadd φGF+˙fH=GF+˙GH

Proof

Step Hyp Ref Expression
1 gsumadd.b B=BaseG
2 gsumadd.z 0˙=0G
3 gsumadd.p +˙=+G
4 gsumadd.g φGCMnd
5 gsumadd.a φAV
6 gsumadd.f φF:AB
7 gsumadd.h φH:AB
8 gsumadd.fn φfinSupp0˙F
9 gsumadd.hn φfinSupp0˙H
10 eqid CntzG=CntzG
11 cmnmnd GCMndGMnd
12 4 11 syl φGMnd
13 1 submid GMndBSubMndG
14 12 13 syl φBSubMndG
15 ssid BB
16 1 10 cntzcmn GCMndBBCntzGB=B
17 4 15 16 sylancl φCntzGB=B
18 15 17 sseqtrrid φBCntzGB
19 1 2 3 10 12 5 8 9 14 18 6 7 gsumzadd φGF+˙fH=GF+˙GH