Metamath Proof Explorer


Theorem gsumadd

Description: The sum of two group sums. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by Mario Carneiro, 25-Apr-2016) (Revised by AV, 5-Jun-2019)

Ref Expression
Hypotheses gsumadd.b B = Base G
gsumadd.z 0 ˙ = 0 G
gsumadd.p + ˙ = + G
gsumadd.g φ G CMnd
gsumadd.a φ A V
gsumadd.f φ F : A B
gsumadd.h φ H : A B
gsumadd.fn φ finSupp 0 ˙ F
gsumadd.hn φ finSupp 0 ˙ H
Assertion gsumadd φ G F + ˙ f H = G F + ˙ G H

Proof

Step Hyp Ref Expression
1 gsumadd.b B = Base G
2 gsumadd.z 0 ˙ = 0 G
3 gsumadd.p + ˙ = + G
4 gsumadd.g φ G CMnd
5 gsumadd.a φ A V
6 gsumadd.f φ F : A B
7 gsumadd.h φ H : A B
8 gsumadd.fn φ finSupp 0 ˙ F
9 gsumadd.hn φ finSupp 0 ˙ H
10 eqid Cntz G = Cntz G
11 cmnmnd G CMnd G Mnd
12 4 11 syl φ G Mnd
13 1 submid G Mnd B SubMnd G
14 12 13 syl φ B SubMnd G
15 ssid B B
16 1 10 cntzcmn G CMnd B B Cntz G B = B
17 4 15 16 sylancl φ Cntz G B = B
18 15 17 sseqtrrid φ B Cntz G B
19 1 2 3 10 12 5 8 9 14 18 6 7 gsumzadd φ G F + ˙ f H = G F + ˙ G H