| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumfsum.1 |
|
| 2 |
|
gsumfsum.2 |
|
| 3 |
|
mpteq1 |
|
| 4 |
|
mpt0 |
|
| 5 |
3 4
|
eqtrdi |
|
| 6 |
5
|
oveq2d |
|
| 7 |
|
cnfld0 |
|
| 8 |
7
|
gsum0 |
|
| 9 |
|
sum0 |
|
| 10 |
8 9
|
eqtr4i |
|
| 11 |
6 10
|
eqtrdi |
|
| 12 |
|
sumeq1 |
|
| 13 |
11 12
|
eqtr4d |
|
| 14 |
13
|
a1i |
|
| 15 |
|
cnfldbas |
|
| 16 |
|
cnfldadd |
|
| 17 |
|
eqid |
|
| 18 |
|
cnring |
|
| 19 |
|
ringmnd |
|
| 20 |
18 19
|
mp1i |
|
| 21 |
1
|
adantr |
|
| 22 |
2
|
fmpttd |
|
| 23 |
22
|
adantr |
|
| 24 |
|
ringcmn |
|
| 25 |
18 24
|
mp1i |
|
| 26 |
15 17 25 23
|
cntzcmnf |
|
| 27 |
|
simprl |
|
| 28 |
|
simprr |
|
| 29 |
|
f1of1 |
|
| 30 |
28 29
|
syl |
|
| 31 |
|
suppssdm |
|
| 32 |
31 23
|
fssdm |
|
| 33 |
|
f1ofo |
|
| 34 |
|
forn |
|
| 35 |
28 33 34
|
3syl |
|
| 36 |
32 35
|
sseqtrrd |
|
| 37 |
|
eqid |
|
| 38 |
15 7 16 17 20 21 23 26 27 30 36 37
|
gsumval3 |
|
| 39 |
|
sumfc |
|
| 40 |
|
fveq2 |
|
| 41 |
23
|
ffvelcdmda |
|
| 42 |
|
f1of |
|
| 43 |
28 42
|
syl |
|
| 44 |
|
fvco3 |
|
| 45 |
43 44
|
sylan |
|
| 46 |
40 27 28 41 45
|
fsum |
|
| 47 |
39 46
|
eqtr3id |
|
| 48 |
38 47
|
eqtr4d |
|
| 49 |
48
|
expr |
|
| 50 |
49
|
exlimdv |
|
| 51 |
50
|
expimpd |
|
| 52 |
|
fz1f1o |
|
| 53 |
1 52
|
syl |
|
| 54 |
14 51 53
|
mpjaod |
|